Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Зависимость дальности перелета объекта от угла бросания

Тип Реферат
Предмет Авиация и космонавтика
Просмотров
725
Размер файла
107 б
Поделиться

Ознакомительный фрагмент работы:

Зависимость дальности перелета объекта от угла бросания

Вступление:

При движении тел в однородном гравитационном поле, их траектории представляют собой параболы. И решая задачу относительно дальности полета, как функции начальной скорости и угла бросания тела, можно найти максимальную дальность перелета:

,

А, следовательно, и обратное решение для начальных, угла и скорости бросания тела, при которых обеспечивается перелет на заданное, максимальное расстояние.

, ,

Угол отсчитывается от горизонта.

При рассмотрении движения тел в сферически симметричном гравитационном поле, их траектории, представляют собой эллипсы, в одном из фокусов которых, находится источник гравитационного поля (в случае сферически симметричных тел - центр притягивающего центрального тела). Если бросание тел производить с поверхности центрального тела (Планеты), то дальность перелета (т.е. расстояние от точки бросания до точки падения) можно представить в виде длины дуги на поверхности сферы. Тогда, решая баллистическую задачу, можно найти такие начальную скорость и начальный угол бросания тела, при которых обеспечивается перелет тела, на заданное расстояние с наименьшими энергозатратами.


Решение:

Для решения данной задачи в первую очередь найдем функцию дальности перелета брошенного тела от начальной скорости и начального угла бросания. А так же всесторонне изучим данную зависимость.

-Радиус планеты

-Начальная скорость

-Начальный угол

-Параметр орбиты

-Гравитационный параметр планеты

-Дальность бросания тела

Как видно из рисунка, для нахождения , необходимо найти угол . Применяя результаты решения задачи Кеплера и используя не сложные вычисления, найдем зависимость

.

Т.к.

(Где - эксцентриситет орбиты)

То, выражая значения параметра и эксцентриситета орбиты через и , получим конечное выражение:

Для простоты обозначим:

, т.к..

В результате будем иметь:

Итак, мы получили зависимость дальности перелета брошенного тела от начальных скорости и угла бросания. Так как при незначительных скоростях бросания и дальность перелета брошенного тела также будет незначительна, а в качестве траектории брошенного тела будет выступать апоцентрическая окрестность эллипса, которая аппроксимируется (приближается) параболой, то можно ожидать, что при небольшой скорости (скоростях, много меньших первой космической скорости) бросания, максимальная дальность будет обеспечиваться при угле бросания, близкому к значению от горизонта, т.е. при .

Действительно, изобразив графически зависимость дальности бросания тела [Km] от угла вектора скорости к горизонту, (при фиксированной скорости) можно проследить данный факт.


B=0.1

B=0.6

B=0.9

Из графиков видно, что при незначительных скоростях бросания, максимум зависимости приходится на угол равный 45 градусов от горизонта. А при дальнейшем увеличении скоростей, максимум дальности перелета смещается в сторону малых углов. И при приближении скорости бросания к круговой скорости (первой космической), выше приведенная зависимость переходит в прямую, имеющую максимальное значение при 0 градусов, равное , т.е. половину длины окружности планеты.


B=1.0

То есть мы увидели, что максимальная дальность перелета тела, при фиксированной скорости бросания, обеспечивается при определенном угле, который является функцией скорости броска. Чтобы найти данный угол, продифференцируем функцию дальности броска по углу бросания и после чего, приравняв ее к нулю, выразим значение угла.

А после подстановки данного выражения обратно в зависимость дальности, найдем максимальное расстояние броска, которое можно обеспечить при заданной начальной скорости . Т.е. т.к.

, определим максимально возможную дальность перелета, как функцию начальной скорости.

Решая обратную задачу, можно зная расстояние, на которое необходимо бросить тело, найти ту оптимальную скорость и угол броска, при которых обеспечится перелет тела на данное расстояние с наименьшими энергозатратами.

Для решения данной задачи, составим квадратное уравнение для выражения . Где обозначим: . С учетом данных замен, уравнение примет вид:

Чтобы оценить корни уравнения, построим графики для при различных значениях .

Так как , .

Из графиков квадратного уравнения можно заметить, что при малых дальностях броска, два корня данного уравнения практически совпадают в окрестности, но при увеличении дальности броска до значения решение распадается на две части. Причем один корень всегда положительный, а другой отрицательный. А так как , отрицательный корень отбрасываем, так как он не имеет смысла.

И находя положительное решение данного уравнения, имеем:

Откуда легко получить значение скорости, при которой обеспечивается перелет на заданное расстояние (по оптимальной траектории).

Т.к. , то получим конечное выражение:

А, подставляя данное выражение в формулу для оптимального угла, найдем значение угла, при котором обеспечивается перелет.

Итак, задача решена!!!

Все графики построены на примере бросания тел с Лунной поверхности:

,

Примечания:

1. Апоцентр - наиболее удаленная от центрального тела точка эллиптической орбиты.

2. Апоцентрическая окрестность- окрестность эллипса, в близи точки апоцентра.

3. - гравитационный параметр планеты, где - гравитационная постоянная, - масса планеты. Используется в качестве упрощения записи выражений, а также по причине того, что гравитационный параметр планет гораздо более точно определен из эксперимента, нежели определены гравитационная постоянная и массы планет в отдельности.

4. Понятие эксцентриситета орбиты вводится в аналитической геометрии при изучении кривых второго порядка (конических сечений). Эксцентриситет характеризует степень вытянутости орбиты (эллипса), и для замкнутых орбит лежит в интервале от 0 до 1. Т.е. для абсолютно круглой орбиты эксцентриситет равен 0, для параболической орбиты его значение равно 1, для гиперболических траекторий значение эксцентриситета больше 1.

В случае замкнутых орбит:

, где - расстояние от центра эллипса до одного из его фокусов, - большая полуось орбиты (эллипса.)

5. и - некоторые функции, которые используются тля упрощения записи выражений. Т.е. на самом деле имеет довольно громоздкий вид, и целесообразно в данной зависимости сделать замену . К тому же данная замена позволит более наглядно оценить вышеприведенную зависимость. В данном случае - это отношение скорости бросания, к первой космической скорости. Аналогичным образом и для подобных целей производится замена .


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно