Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод конечных элементов

Тип Реферат
Предмет Архитектура
Просмотров
1019
Размер файла
67 б
Поделиться

Ознакомительный фрагмент работы:

Метод конечных элементов

Основные положения метода конечных элементов и суперэлементов

Метод конечных элементов (МКЭ) занимает исключительное место в теории расчета конструкций, а его обобщение – метод суперэлементов – позволяет естественным образом ввести и описать идеею иерархически построенных сложных систем.

Рассмотрим плоскую раму каркаса промышленного здания, стойки которой жестко защемлены в фундаментах, а ригели жестко прикреплены к стойкам. Ограничим рассмотрение случаем, когда на раму действует только узловая нагрузка. Пронумеруем узлы – точки пересечения осей стержней друг с другом и “землей”. В каждом узле i рамы на нее могут действовать сосредоточенные силы Fx, Fy и момент М, заданные в некоторой глобальной системе координат, связанной с рамой.

Введем в рассмотрение вектор {Fi} обобщенных сил, действующих на раму в узле i

(1)

Совокупность внешних воздействий на всю раму будет характеризоваться вектором {F}:

(2)

Где N-число узлов рамы. Размерность этого вектора 3хN (пока не учитываем факт прикрепления некоторых узлов к “земле”). Под действием внешних сил {F} стержни рамы получают деформации, а узлы переместятся. После перемещения узлов рамы будем описывать в глобальной системе координат. Перемещения {di} каждого узла характеризуется тремя числами – линейными перемещениями dxi, dyi и углом поворота ji, являющимися компонентами вектора обобщенных перемещений узла di:

(3)

А перемещения всей рамы вектором d:

(4)

Здесь, как и выше, не учитываются условия закрепления стоек рамы и узлов.

Напряженно-деформированное состояние каждого стержня удобнее характеризировать в локальной системе координат, связанной с ним. Ось х’ этой системы координат направим от “начала” q стержня к его “концу” r (понятие “начало” и ‘конец” условны и нужны только для того, чтобы задать положительное направление на оси х’), ось у’ – в плоскости рамы, а ось z’ – перпендикулярно плоскости. Положительные направления осей y’ и z’ выберем так, чтобы они образовывали с x' правую систему координат.

Проведем в каждом стержне рамы по 2 поперечных сечения на расстоянии, бесконечно близких к узлам – концам стержней q и r. В каждом из полученных решений в общем случае действуют три усилия N, Q, M, приложенные к узлу. Введем вектор обобщенных усилий в сечении с’ стержня m:

(5)

И вектор усилий {fm}, характеризующий напряженное сечение стержня m через векторы усилий в его концевых стержнях q и r (“начале ” и “конце”)

(6)

(штрих означает, что компоненты {fm’} вычислены в локальной системе координат).

Вектор {fm’} полностью характеризует напряженно-деформированное состояние стержня, если к его внутренним точкам не приложены внешние воздействия и известны жесткостные характеристики стержня. Разумеется шесть компонент вектора {fm’} связаны между собой уравнениями равновесия стержня как жесткого тела, но эти уравнения в явном виде далее не используются.

Напряженно-деформированное состояние того же стержня характеризуется и вектором обобщенных перемещений концов стержня q и r, который строится из соответствующих компонент вектора, см. выражение (4):

(7)

Отметим, что при таком введении вектора обобщенных перемещений стержня его напряженно деформированное состояние зависит не только от значений {dm}, но и от способов прикрепления стержня m к узлам q и к и его жесткости.

Например, если бы конец q ригеля был присоединен к стойке шарнирно, то усилие М в сечении q было бы равно нулю, независимо от значений компонент {dm}.

Компоненты вектора {fm’} заданны в локальной системе отсчета, а компоненты вектора {dm} – в глобальной. Для установления связи векторов {fm’} и {dm} в простейшем виде запишем компоненты {dm} тоже в локальной системе отсчета, связанной с рассматриваемым стержнем. Обозначим матрицу преобразования координат

(8)

через [L]:

(9)

Тогда, например, компоненты вектора в локальной системе координат запишутся в виде

(10)

Аналогично компоненты вектора в глобальной системе отсчета связаны с компонентами , соотношением

(11)

Векторы обобщенных усилий и перемещений для стержня, выраженные в локальной и глобальной системах отсчета, связаны соотношением

, (12)

где матрица [Λ] имеет вид

(13)

Введем матрицу жесткости стержня [km’], характеризующую связь между векторами {fm’} и {dm}

(14)

Способ получения матрицы жесткости [km’] является предметом особого рассмотрения. Конкретные примеры вычисления отдельных компонент матрицы [km’] для стержней с различными условиями закрепления узлов приводятся в курсах строительной механики. Физическая сущность процесса получения матрицы [km’] заключается в необходимости решения задач строительной механики для отдельного стержня- получения вектора усилий в концевых сечениях стержня по заданным перемещениям концов стержней (краевая задача первого рода) или получение вектора перемещений концов стержня по заданным силовым воздействиям на его концах (краевая задача второго рода). Для стержневых элементов с жесткостью, постоянной по длине, задача решается в замкнутом виде и матрица [km’] известна. Для физических элементов более общего вида – пластинчатых различного очертания, оболочечных, сложных элементов, являющихся композицией элементов, более простых, - процедура получения матрицы [km’] сводится к фактическому решению той или иной задачи строительной механики или механики сплошной среды. Как правило решить эту задачу в общем виде на удается и матрица жесткости [km’] строится численно для каждого из образующих конструкцию элементов.

В дальнейшем предполагается, что матрица [km’] известна. Для стержня, оба конца которого жестко прикреплены к узлам, она имеет вид:

(15)

где Е-модуль упругости материала стержня; S-площадь поперечного сечения; J-момент инерции сечения; I=EJ/l; l-длина стержня.

Фактический смысл компонент и блоков матрицы [km’] ясен. Блок [Kqq] и его компоненты характеризуют усилия, возникающие в сечении q стержня при смещении узла q, а блок [Kqr] и его компоненты – усилия в сечении q стержня при смещении узла r. В зависимости от ориентации систем отсчета и правила знаков при определении усилий могут изменятся знаки некоторых компонент матрицы [K’m].

Основное соотношение (15) позволяет выразить усилия в концевых сечениях каждого стержня через перемещения его концов – узлов системы. С другой стороны, усилия в концевых сечениях стержней с точностью до знака равны силам, действующим со стороны стержней на узлы, поэтому матрица [K’m] позволяет связать перемещения узлов стержневой системы с силами, с которыми стержни действуют на узлы при перемещениям последних.

Запишем систему равновесия узлов. Для узла имеем систему трех уравнений равновесия:

(16)

где суммирование распространяется на все стержни, сходящиеся в узле i, а с обозначает сечение каждого их этих стержней, бесконечно близкое к узлу. Число этих уравнений равно числу неизвестных перемещений узла. Но поскольку величины {fmc}зависят не только от перемещений указанного узла, но, в силу (14)-(15), и от перемещений соседних узлов, с которыми узел i связан хотя бы одним стержнем, то уравнение (16) для узла i входят и перемещения соседних узлов. Чтобы определить перемещения соседних узлов, системы уравнения типа (16) надо записать для всех узлов системы и решать их совместно.

Уравнение (16) удобно записывать в глобальной системе отсчета, а связь (14) установлена в локальной системе координат, связанных с отдельными стержнями.

Чтобы работать постоянно в глобальной системе координат, выразим связь (14) в глобальной системе координат с помощью соотношений (10)-(13):

. (17)

Умножим это равенство слева на [Λ]-1 и учтите при этом, что в силу ортогональности [Λ] имеет место равенство

(18)

Тогда

(19)

Выражение (19) определяет матрицу [Km] в глобальной системе координат.

Перепишем (16), используя обозначения блоков (15) матрицы

(20)

где суммирование распространяется на все стержни, соединяющиеся с узлом i. Полная система уравнений равновесия для стержневой системы с N узлами в матричной форме примет вид:

(21)

Если какой-либо узел Р на связан ни с одним стержнем с узлом r, то блок [Kpr] в матрице (21) будет тождественно равен нулю. Таком образом, умея вычислять блоки [Kqq] и [Kqr] для отдельных стержней, на основании информации о системе в целом можно построить систему уравнений равновесия (21) относительно искомых перемещений {d}. Вектор внешних сил {F} предполагается известным.

Наличие опорных закреплений приводит к тому, что некоторые компоненты вектора d заранее известны. Соответствующие компоненты должны быть исключены из искомого вектора {d}, равно как и столбцы с теми же номерами из матрицы (21). Уравнение равновесия для закрепленных узлов не составляются, что равносильно уменьшению числа уравнений (числа строк в матрице) системы (21).

После этого можно решить систему (21) относительно {d}. Обычно для решения используются прямые методы, типа метода последовательного исключения неизвестных Гаусса. Найдя {d}, по формулам (14) или (19) можно определить усилия во всех стержневых элементах системы, в том числе и стержнях, примыкающим к опорным узлам. На этом заканчивается этап статического расчета стержневой конструкции.

Литература:

Геммерлинг Г.А. Система автоматизированного проектирования стальных строительный конструкций. – М.: Стройиздат, 1987г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач по предмету «Математика»

Решение задач, Математика

Срок сдачи к 29 дек.

1 минуту назад

Отчет с выполнением заданий

Решение задач, Отчет, бух учет

Срок сдачи к 25 дек.

4 минуты назад

Расчет параметров участка электроэнергетической системы

Решение задач, Электрические системы, электроника, электротехника

Срок сдачи к 8 янв.

4 минуты назад
4 минуты назад

Сделать курсач по методике

Курсовая, Электротехника

Срок сдачи к 26 дек.

5 минут назад

Психология безопасности труда

Реферат, Русский язык и культура речи

Срок сдачи к 29 дек.

7 минут назад

Сделать реферат и презентацию

Презентация, Биомеханика

Срок сдачи к 25 дек.

7 минут назад

написать курсовую работу по уголовному праву

Курсовая, Уголовное право

Срок сдачи к 25 дек.

7 минут назад

Начертить 12 чертежей

Чертеж, Начертательная геометрия

Срок сдачи к 9 янв.

8 минут назад

Феномен успеха и успешность в профессиональном развитии

Реферат, Психология

Срок сдачи к 28 дек.

9 минут назад

В файле прикреплен пример выполнения задания

Контрольная, Криминология

Срок сдачи к 27 дек.

9 минут назад

9-11 страниц. правовые основы военной реформы в ссср в 20-е гг

Реферат, История государства и права России

Срок сдачи к 26 дек.

10 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, Английский язык

Срок сдачи к 26 дек.

10 минут назад

Составить Проект массового взрыва

Контрольная, Взрывное дело, горное дело

Срок сдачи к 8 янв.

12 минут назад

Термодинамика

Решение задач, Термодинамика

Срок сдачи к 26 дек.

12 минут назад

Нужен реферат, объем 15-20 страниц

Реферат, Безопасность в техносфере

Срок сдачи к 5 янв.

12 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, История

Срок сдачи к 26 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно