Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Карл Фридрих Гаусс

Тип Реферат
Предмет Биография
Просмотров
1096
Размер файла
18 б
Поделиться

Ознакомительный фрагмент работы:

Карл Фридрих Гаусс

(1777-1855)

Гаусса нередко называют наследником Эйлера. Они оба носили неформальное звание "король математиков" и удостоились посмертной уважительной шутки: "Он перестал вычислять и жить". Их родным языком был немецкий, но научные труды оба предпочитали писать по латыни. Впрочем, Гаусс оказался последним латинистом среди крупных ученых Европы.

Он с гордостью ощущал себя питомцем эпохи Просвещения. Действительно, в какую иную эпоху талантливый сын садовника и водопроводчика мог удостоиться персональной стипендии от герцога Брауншвейгского и быть принятым в Геттингенский университет" Этот долг Гаусс вернул родине с лихвой: математическая школа в Геттингене сделалась сильнейшей в Германии и процветала более ста лет " пока к власти не пришел Гитлер.

Математический талант Гаусса проявился в раннем детстве " и конечно, первым его увлечением стала арифметика. В 9 лет он открыл (во время школьного урока) формулу суммы арифметической прогрессии. Позднее Гаусс перенес все теоремы арифметики натуральных чисел на многочлены и на целые комплексные числа. В итоге в алгебре появилось общее понятие кольца. Заодно выяснилось, что множество простых чисел вида (4к+1) бесконечно, и что все они представимы в виде суммы двух квадратов. Это был первый новый факт такого рода, открытый со времен Эратосфена. Позднее ученик Гаусса " Петер Дирихле " намного превзошел учителя, доказав, что в любой арифметической прогрессии содержится бесконечное множество простых чисел (если первый член и разность этой прогрессии взаимно просты).

Гаусс до старости сохранил юношескую жажду знаний и огромное любопытство. Например, в 62 года он быстро выучил русский язык, чтобы самому разобраться в трудах своего коллеги " Николая Лобачевского. Но обычно Гаусс избегал читать чужие статьи или книги. Ему хватало формулировки основного результата; доказательство он придумывал сам, заодно открывая многие факты, о которых не подумал сам автор. Такая привычка оформилась в юности " когда 19-летний Гаусс решил сам освоить все достижения и методы алгебры, не пропуская ни одного яркого приложения этой древней науки.

Результат был поразительный. Гаусс нашел алгебраическое доказательство неразрешимости многих задач на построение циркулем и линейкой, которые мучили еще Пифагора. Ключевая идея Гаусса очень проста: надо изобразить точки плоскости комплексными числами (как начал делать Эйлер), и тогда геометрическая задача превратится в алгебраическую! Но как доказать неразрешимость алгебраической задачи"

Гаусс заметил, что любое построение циркулем и линейкой сводится на алгебраическом языке к решению цепочки квадратных уравнений. А каждая "непокорная" задача на построение сводится к решению уравнения-многочлена степени большей, чем 2. Почему же решение такого уравнения иногда не сводится к решению квадратных уравнений" Тут мало одних расчетов; нужно вводить новые математические понятия, отражающие суть дела.

Гаусс изобрел два таких понятия: поле и векторное пространство. В итоге векторная алгебра, давно привычная физикам и геометрам, стала самостоятельной алгебраической наукой. Оказалось, что комплексное число, достижимое с помощью циркуля и линейки, лежит в некотором поле размерности 2.. " а всякий корень неразложимого многочлена степени (к) лежит в поле размерности (к). Если интересующее нас число лежит в том и в другом поле " значит, число 2.. делится на (к); то есть, само число (к) является степенью двойки.

Из этого рассуждения следует, что корень любого неразложимого многочлена степени 3 нельзя построить циркулем и линейкой. Например, не удается разделить на 3 равные части угол в 60", или построить треугольник по трем неравным медианам. Такой же запрет препятствует делению окружности на 7, 11, 13, 9 или 25 равных частей. Но для 5 или 17 частей запрета нет, поскольку числа 5-1 = 4 и 17-1 = 16 суть степени двойки. Поэтому эллины нашли способ построения правильного 5-угольника, а Гауссу удалось построить правильный 17-угольник. Он завещал изобразить эту фигуру на своем надгробии " что и было сделано. Однако проблема "квадратуры круга" Гауссу не покорилась.

К 24 годам Гаусс вошел в число самых известных математиков Европы. Но для полной славы нужно было отличиться в области небесной механики; тут судьба подбросила Гауссу достойную задачу. В первую ночь 1801 года астрономы обнаружили на небе малую планету Цереру, чья траектория лежит между Марсом и Юпитером. После немногих наблюдений планета была потеряна, и астрономы обратились за помощью к математикам. Гаусс первым откликнулся на этот призыв: по трем наблюдениям он сумел предсказать все будущие положения Цереры. Полвека спустя теория возмущений Гаусса позволила астрономам рассчитать положение на небе еще никем не виданной планеты " Нептуна.

В 30 лет Гаусс считался уже "королем" европейских математиков. Соперничать ему было не с кем " да он и не любил это занятие. Материальное благосостояние не угрожало профессору. Всесильный Наполеон тогда успешно грабил всю Европу, а Ганновер " особенно, поскольку это была вотчина короля непокорной Англии. Молодая жена Гаусса умерла. Только поиск новых тайн природы (в той мере, в какой они открываются через математику) помогал ученому отвлечься от невзгод.

Замечательный успех в области геометрических построений побудил Гаусса к поискам новых геометрических доказательств. Он увлекся старой, как мир, загадкой евклидова постулата о параллельных прямых. В 1818 году Гаусс догадался, что этот постулат может иметь иную формулировку " но не на плоскости, а на других поверхностях, неведомых Евклиду.

До конца жизни Гаусс хранил молчание о своих открытиях в области оснований геометрии " даже после того, как их повторили более молодые математики: Николай Лобачевский из Казани и Янош Больяи из Темешвароша. В чем тут дело" Кое-что можно понять из писем Гаусса к его друзьям; об остальном приходится догадываться. Чтобы убедить научный (и околонаучный) мир в независимости постулата Евклида " надо предъявить наглядную модель, где выполнены все прочие аксиомы, а эта заменена чем-то другим. Например, параллельных прямых может вовсе не быть, если любые две прямые пересекаются. Так обстоит дело на сфере, где роль прямых играют окружности наибольшего радиуса. Позднее эту геометрию назвали именем Римана, но в начале 19 века ее никто не принял бы всерьез. Иной вариант геометрии " со многими прямыми, проходящими через одну точку и не пересекающими данную прямую " называют геометрией Лобачевского. Она реализуется на поверхности с постоянной отрицательной кривизной: на так называемой псевдосфере, которая получается при вращении трактрисы ("кривой преследования", похожей на гиперболу) вокруг ее оси. Гаусс то ли не смог построить псевдосферу, то ли не заметил ее уникальные свойства; а без этого он не решился огласить новую "неестественную" геометрию перед широкой публикой.

Но почему Гаусс не распространил свою гипотезу о параллельных прямых хотя бы в узком кругу математиков" Ведь именно так поступил Пифагор, обнаружив несоизмеримость диагонали квадрата с его стороной! Вероятно, Гаусс рассуждал так: если постулат о параллельных прямых независим от прочих аксиом, то исчезает единая наука геометрия! Она разделяется, по крайней мере, на три ветви " согласно трем вариантам постулата о параллельных (по Евклиду, по Риману и по Лобачевскому). А что дальше" Не продолжится ли ветвление геометрической науки неограниченно " по каждой новой аксиоме" Не охватит ли этот процесс всю математику" И кто захочет работать в такой раздробленной науке"

Видимо, так рассуждал Гаусс во второй половине своей жизни " и молчал, не в силах ответить себе и другим на этот грозный вопрос. Трудно ответить на него и в 20 веке " после того, как смутная догадка Гаусса превратилась в 1931 году в суровую теорему Геделя о неполноте любой формальной системы аксиом.

Но ученому надо жить и работать " даже когда его разум не дает ответа на мучающие его вопросы. После 1820 года Гаусс увлекся геометрией произвольных гладких поверхностей. Он дал определение их кривизны и нашел неожиданную связь кривизны с эйлеровой характеристикой поверхности. Занимался Гаусс и математической физикой: он строил математическую теорию магнетизма, в то время как в Англии Фарадей изобретал способы технического использования этой природной силы.

Не забывал Гаусс и о комплексных числах, которые так славно помогли ему разобраться в тайнах геометрических построений. Как будто развлекаясь, одинокий мудрец придумывал все новые доказательства своей теоремы о том, что всякий многочлен имеет комплексный корень. Видимо, Гаусс хотел понять: имеет ли эта "чисто алгебраическая" проблема хоть одно число алгебраическое решение, или неизбежны комбинации алгебры с геометрией, либо с математическим анализом"

Оказалось, что такие комбинации неизбежны. Любая сложная проблема решается лишь после нескольких ее переводов с одного математического языка на другой. И вот уже два столетия вся математическая наука развивается, а в режиме взаимопомощи и сплетения ее различных ветвей. Гаусс первым начал работать в таком режиме: как бы перебрасывая горящий уголек из одной ладони в другую. За это его называют "отцом современной математики".


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно