Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Тип Реферат
Предмет Биология и химия
Просмотров
1064
Размер файла
67 б
Поделиться

Ознакомительный фрагмент работы:

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами

Скляр Александр Александрович

Автореферат диссертации на соискание ученой степени кандидата химических наук

Краснодар 2006

Работа выполнена на кафедре общей и неорганической химии Кубанского государственного университета

Общая характеристика работы

Актуальность работы:

Медь является необходимым следовым элементом в теле человека, при этом большинство ионов меди(II) в человеческой плазме крови найдено в форме смешанных комплексов с молекулами аминокислот, пептидов и других органических молекул. Несмотря на то, что изучение комплексообразования меди(II) с биологически активными лигандами является предметом исследования на протяжении нескольких последних десятилетий, ряд аспектов является до конца невыясненным. Это обусловлено, в первую очередь, сложностью рассматриваемых систем, поскольку процессы протекают в многокомпонентных системах, часто с участием молекул – полимеров, имеющих в своем составе большое количество функциональных групп. Одним из способов решения рассматриваемой задачи является моделирование физиологических процессов на примере взаимодействия ионов металлов, обладающих спектральными свойствами, и лигандов, имеющих в своем составе те же функциональные группы, что и рассматриваемый биологический объект.

Большинство органических лигандов, являющихся аналогами природных соединений, способных взаимодействовать с ионами меди, содержат в своем составе кислород- и (или) азот- содержащие группы, за счет которых и возможна координация. При этом координация может осуществляться различными способами, что связано как со строением молекулы лиганда (взаимным расположением донорных групп), так и с влиянием условий протекания реакции комплексообразования.

Наиболее распространенным методом исследования комплексообразования в растворе является метод потенциометрического титрования, который, обладая рядом положительных характеристик, имеет недостаток, связанный с тем, что выбор схемы равновесия делается, как правило, априорно. Напротив, применение спектральных методов, позволяет конкретизировать состав и строение образующихся в растворе комплексов. Однако извлечение химической информации из спектральных данных представляет собой довольно сложную и не всегда выполнимую задачу. Поэтому актуальной является работа по расширению границ использования спектроскопических методов к исследованию комплексных соединений, усовершенствованию способов обработки спектров с помощью современной вычислительной техники.

Диссертационная работа выполнена в соответствии с темой научно-исследовательской работы кафедры общей и неорганической химии Кубанского государственного университета (№ государственной регистрации 01178695675) в соответствии с координационным планом РАН по направлению 2.17. по теме “Координационные соединения и материалы на их основе” и при финансовой поддержке РФФИ (грант 06-03-32881-а).

Цель и задачи работы.

Целью настоящей работы являлась разработка новых теоретических и экспериментальных подходов для изучения комплексообразования меди(II) с органическими соединениями, содержащими в качестве донорных атомы азота и кислорода.

В ходе выполнения исследования решались следующие задачи:

Разработка методик расчета характеристик комплексных соединений в растворе методами потенциометрического титрования и электронной спектроскопии при наличии равновесий различного типа без ограничения количества и состава частиц.

Изучение зависимости состава и свойств комплексов N-фосфонометилглицина с медью(II) от рН.

Изучение строения комплексов меди(II) с 1,2-дигидро-4Н-3,1-бензоксазинами в растворе.

Определение способа координации галактаровой кислоты с медью(II) по данным ИК спектров.

Научная новизна работы:

С помощью разработанных компьютерных программ обработаны полученные экспериментальные данные, что позволило рассчитать характеристики комплексных соединений, определить строение и свойства соединений меди(II) с рядом органических лигандов, содержащих в качестве донорных атомы кислорода и азота.

Практическая значимость работы. Созданные компьютерные программы расчетов и экспериментальные данные диссертационной работы могут быть использованы в научной деятельности, а также при проведении лекционных и семинарских занятий по химии координационных соединений в Кубанском, Казанском, Ростовском, Иркутском и др. университетах.

Апробация работы. Результаты работы представлены на IV международной научно-практической конференции «Компьютерные технологии в науке, производстве, социальных и экономических процессах» (Новочеркасск, 2003), VII Международного семинаре по магнитному резонансу (спектроскопия, томография и экология) (Ростов н/Д, 2004), IV международной науч.-практ. конференции «Моделирование. Теория, методы и средства» (Новочеркасск, 2004), Национальных Конференциях «Информационно-вычислительные технологии в решении фундаментальных научных проблем и прикладных задач химии, биологии, фармацевтики и медицины»: ИВТН-2004 и ИВТН-2005 (Екатеринбург, 2004, 2005), XXII Международной Чугаевской конференции по координационной химии (Кишинев, 2005), XV Российской студенческой научной конференции «проблемы теоретической и экспериментальной химии» (Екатеринбург 2005), IV Всероссийской конференции молодых ученых “Современные проблемы теоретической и экспериментальной химии” (Саратов, 2003).

Публикации. Основное содержание работы нашло отражение в 14 публикациях.

Структура и объем работы. Диссертация состоит из введения, 3 глав, выводов и списка цитируемой литературы (130 наименования). Работа изложена на 115 страницах, включает 14 рисунков и 13 таблиц.

Основное содержание работы

Во введении обоснована актуальность работы, сформулированы цели и задачи исследования.

В первой главе приведен обзор имеющихся литературных данных о спектроскопических методах изучения комплексных соединений, интерпретации экспериментальных спектров ЭПР, электронных и ИК спектров. Проведен анализ методик исследования строения и свойств и расчета параметров комплексных соединений с использованием ЭВМ.

Во второй главе представлены результаты теоретического исследования, в ходе которого разработана методика определения состава, строения и свойств комплексных соединений металлов на основе совместного применении методов потенциометрического титрования и электронных спектров, предложены новые компьютерные программы для: обработки электронных, ЭПР спектров и pH потенциометрических кривых растворов, содержащих ион металла и лиганд(ы), с учетом возможности образования комплексов с различными формами лигандов; предложена методика разделения электронных спектров комплексов на составляющие методом гауссиан анализа и нахождение спектральных характеристик; определения частот и форм нормальных колебаний комплексных соединений по данным ИК спектров.

В программе обработки спектров и pH кривых в блоке расчета мольных долей компонентов системы применяется метод Бринкли, модифицированный для расчета при известной концентрации ионов водорода. Данный метод добавляет ряд контролирующих инструкций к решению системы уравнений по схеме Ньютона-Рафсона, что исключает получение результатов, не имеющих физического смысла. Блок оптимизации искомых параметров включает в себя методы сканирования, координатного и градиентного спуска.

Таким образом, разработанный нами программный комплекс для интерпретации экспериментальных спектров, позволяет автоматически определять константы устойчивости комплексов из спектров ЭПР, электронных спектров и кривых потенциометрического титрования, а также другие параметры ЭПР и электронных спектров.

Для нахождения числа электронных переходов и их характеристик по данным электронных спектров нами создана программа ГАЭС (Гауссиан Анализ Электронных Спектров), позволяющая находить спектральные параметры компонент теоретического спектра, как в ручном так и в автоматическом режиме.

Разработана методика определения строения комплексных соединений из анализа электронного спектра в области d-d-переходов, в основе которого лежит модель углового перекрывания (МУП), выделяющая радиальные параметры, учитывающие степень связывания или разрыхления σ– и π–связей металл-лиганд и угловые множители, зависящие от геометрии молекулы.

Для сложных молекул MLn энергетические уровни находится суммированием возмущений d-орбиталей, вызываемых каждым из лигандов с учетом ориентации этих орбиталей относительно связей металл-лиганд:

(1)

где - , - , - угловые множители, j=1..5 – порядковый номер d-орбитали; i=1..n – порядковый номер лиганда; n-количество лигандов.

При наиболее распространенном октаэдрическом окружении иона металла лигандами угловые координаты лигандов будут иметь значения, приведенные в таблице 1.

Таблица 1.

Угловые координаты лигандов.

ЛигандΘφ
L1900
L290180
L39090
L490270
L500
L61800

Расчет угловых множителей по данным угловых координат лигандов (таблица 1) приводит выражения для энергии d – орбиталей комплекса (1) к виду:

(2)

Таким образом, приравнивая энергию переходов между d-орбиталями, выраженную через параметры МУП, со значениями этих энергий, найденными из гауссиан анализа экспериментального электронного спектра, получаем систему уравнений для каждого варианта расположения энергетических уровней. Решая полученные уравнения относительно радиальных параметров МУП и анализируя их значения, характерные для координационных соединений, определяется правильный вариант расположения энергетических уровней.

Предложена также методика для расчета частот и форм нормальных колебаний молекул, исходя из данных об их геометрическом строении и силовом поле с использованием решения прямой колебательной задачи путем нахождения собственных значений и собственных векторов в уравнении Шредингера методом приведения к матрице Хессенберга и использованием QR алгоритма с неявными сдвигами. Встроенная в программу база данных по геометрии фрагментов молекул и молярных масс атомов облегчает определение структуры химических соединений, поскольку достаточно изменить одну переменную и тогда все элементы матрицы, содержащей кинетические параметры, использующие ее, пересчитываются автоматически.

В третьей главе приведены результаты экспериментального исследования.

В разделе 3.1 описано изучение бинарных комплексов N-фосфонометилглицина с медью(II) методами потенциометрии и электронной спектроскопии, а также определение влияния аминокислоты (валина) на процесс комплексообразования.

По значениям констант депротонирования лигандов в условиях исследования процессов комплексообразования (температура, ионная сила), определенных нами методом рН метрии, были рассчитаны диаграммы распределения, представленные на рисунке 1.

Рисунок 1. Диаграмма распределения различных форм N-фосфономе-тилглицина и валина.

В системе Cu2+-H3PMG константы устойчивости комплексов убывают в ряду , что в первом случае соответствует переходу от тридентатного связывания с образованием двух пятичленных хелатных колец к бидентатному с восьмичленным циклом, а во втором – объясняется стерическими затруднениями при образовании связи с двукратно протонированной фосфоновой группой.

Для тройных систем Cu2+-H3PMG-HVal нами были получены значения констант устойчивости разнолигандных комплексов Cu(PMG)Val2- (lgβ1110 = 19.81(4)) и Cu(HPMG)Val- (lgβ1111 = 26.02(6)) и рассчитаны диаграммы распределения иона металла (рисунок 2). Образованию комплексов Cu(H2PMG)(HVal)+, Cu(HPMG)(HVal), Cu(HPMG)Val-, Cu(PMG)Val2-, по всей видимости, препятствует большая устойчивость при низких значениях рН бис-комплексов с формами HPMG2- и H2PMG-, способными образовывать хелатные комплексы.

Большую устойчивость комплекса Cu(PMG)Val2 по сравнению с Cu(PMG) можно объяснить вхождением в координационную сферу иона металла меньшего по объему по сравнению с PMG3- хелатообразующего валинат-иона, также занимающего два места в экваториальной плоскости комплекса. По сравнению с Cu(Val)2 тройной комплекс устойчив за счет тридентатного характера связывания глифосат-аниона.

Рисунок. 2. Диаграммы распределения металла для растворов с соотношениями сCu: сPMG : сVal = 1:1:1 (а) и 1:2:2 (б) (сCu=0.0015 моль/л, 0.1 М KCl).

В электронных спектрах в системе Cu2+-H3PMG при увеличении рН и соотношения сPMG: сCu возрастает оптическая плотность, максимум полосы поглощения смещается в длинноволновую область не превышая значения 14500 см-1, что означает присутствие не более одного атома азота в экваториальной плоскости комплекса, то есть в комплексе Cu(PMG) одна из донорных групп не принимает участия в связывании и один из лигандов координирован бидентатно. Об этом также свидетельствует его константа устойчивости, которая намного ниже ожидаемой при одинаковой координации обоих лигандов.

Добавление в систему валина смещает сигнал в длинноволновую область и при рН > 8 максимум полосы поглощения имеет значение свыше 14500 см-1, что подтверждает нахождение в экваториальной плоскости комплекса двух донорных атомов азота.

Значения констант устойчивости, полученные в ходе компьютерной обработки оптических спектров, соответствуют данным рН метрического титрования, что свидетельствует о корректности выбранной схемы равновесий. Нами предложены следующие способы координации в разнолигандных комплексах:

Cu(HPMG)Val- Cu(PMG)Val2–

В разделе 3.2 описано исследование строения комплексов Cu(II) с 2-[2-гидроксифенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (I) и 2-[2-гидрокси-5-нитрофенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (II) методами ЭПР и электронной спектроскопии.

По данным ИК спектров установлено, что в реакции комплексообразования участвует именно азометиновая форма лигандов. Данные ЭПР (наличие дополнительной сверхтонкой структуры от двух ядер азота) позволяют предположить следующее строение координационного центра:

(Х = H (I); NO2 (II)).

Разложение электронного спектра на Гауссовы составляющие с помощью программы ГАЭС позволяет выделить четыре компоненты, параметры которых приведены в таблице 2, соответствующие d-d переходам.

Приравнивая, полученные в рамках МУП, выражения для энергии переходов между d-орбиталями со значениями ν0 из таблицы 2, получаем системы уравнений для четырех возможных вариантов расположения энергетических уровней:

1) ;

2) ;

3) ;

4) .

Таблица 2.

Параметры полос поглощения отдельных электронных переходов в комплексах меди(II) c соединениями I и II.

№ переходаe, дм3∙моль-1∙см-1ν0, см-1δ½, см-1f, 10-4
I
12014047191010.57
23915422107811.63
3291711110008.023
4271903311338.463
II
1121412221006.972
23915820128413.85
3231792810366.592
4181958110225.089

Значения параметров МУП найдены нами решением полученных систем уравнений и приведены в таблице 3.

Анализ рассчитанных значений параметров МУП позволяет считать вариант (2) более предпочтительным, так как для него выполняется ряд соотношений: > (где l=s, p), поскольку атом азота образует более прочные ковалентные связи; ≈ 3-5 для всех донорных атомов и , характерно для координационных связей меди(II) с N- и O-содержащими донорными группами.

Таблица 3.

Параметры МУП комплексных соединений, рассчитанные по электронным спектрам.

Вариант

Параметры

Cu(II) + ICu(II) + II
(1)(2)(3)(4)(1)(2)(3)(4)
71007100710071007100710071007100
694783221001111933702287201082812481
1979.83011331757191628290136565722
1018.82050512265648012074.555366776
2824.34543581072512681.5480463857625

Так как энергия -орбитали может быть меньше энергии -орбитали лишь в случае отсутствия координации в аксиальных положениях, то можно считать, что данные электронной спектроскопии свидетельствуют о неучастии в координации атомов кислорода трифенилкарбинола в растворе и подтверждают предложенную выше структуру.

Таким образом, данные электронных спектров подтверждают структуру комплекса, предложенную выше.

Раздел 3.3 посвящен определению структуры комплекса меди(II) состава Cu(НGala)2×4H2O методом ИК спектроскопии.

Произведенный нами эмпирический анализ и сравнение ИК спектров галактаровой кислоты (ГК) и галактарата меди(II) показал, что при комплексобразовании происходит разрыв водородных связей свободной кислоты, и взаимодействие спиртовых групп (νОНспирт) ГК с ионом металла, причем только одна из карбоксильных групп ГК связывается с ионом меди(II), а другая – остается связанной водородной связью с карбоксильной группой ГК молекулы соседнего комплекса.

Расщепление полосы поглощения, принадлежащей валентным колебаниям карбонильной группы ГК, в спектре комплекса на две полосы поглощения 1618 и 1385 см-1, соответствующие антисимметричным и симметричным валентным колебанием депротонированной карбоксильной группы (νasCOO־ и νsCOO־, соответственно) ГК. Значение ΔνCOO־ равное 233 см-1 и присутствие в ИК спектре галактарата меди полосы средней интенсивности в области 1729 см-1 свидетельствует о монодентатной координации карбоксильной группы с ионом меди(II).

Понижение частот валентных колебаний связей С-О спиртовых групп (νС-Оспирт) в спектре комплекса на ~20 см-1 свидетельствует о взаимодействии спиртовых групп ГК с ионом меди(II), что приводит к изменению системы водородных связей.

На основании вышеизложенного нами предложена следующая структура соединения:

,

исходя из которой, было проведено сравнение рассчитанных и экспериментальных данных (таблица 4).

Используемая нами методика пофрагментного расчета частот и форм нормальных колебаний сложных молекул предполагает предварительный расчет отдельных фрагментов участвующих в комплексообразовании, в частности лиганда, с уточнением исходных значений силовых постоянных в ходе расчета.

Таблица 4.

Экспериментальные и рассчитанные значения частот полос поглощения H2Gala и Cu(HGala)2∙4H2O (см-1).

H2GalaCu(HGala)2∙4H2O

Отнесение

ЭкспериментРасчет ЭкспериментРасчет
3422пл, 3280ш3570, 34553577, 3477пл, 3304, 3160пл3570, 3400νOHспирт
2968, 2921, 28702962, 28552969, 2923, 28572962, 2855νCH
2656, 25603577, 34772656, 2559пл-νOHкарб
172917291729-νC=O
--16191619νasCOO¯
1455 146014521459δCCH
142214121422пл1424δCОНспирт + δCОНкарб
137513761365пл1376δCCH
--13851375νsCOO¯
1310пл, 1296, 1261пл1310, 1300, 12571310, 1298, 12621309, 1298, 1255δCCH + δCОНспирт
1240, 1212, 1240, 12111241, 12111240, 1211νC-С,
1123, 1062 1117, 1052пл, 1047νC-Oспирт
966988τCСОНкарб
919920-τCООН
862, 830, 801, 720пл, 700, 668, 633, 510, 465, 376, 283, 249, 242пл, 208, 179 пл, 139, 116, 74879, 845, 802, 720пл, 698, 667, 634, 509, 467, 401, 373пл, 281, 236ш, 208, 179, 140, 119пл, 76Скелетные колебания (δCCС + τОССС + τОССО + τСССС + δОСО и т.п.)
--554, 442607, 410νCu-O
--330, 152, 125,334, 155, 128δ(Cu-лиганд)

Хорошее соответствие результатов расчета экспериментальным данным подтверждает предложенную нами выше структуру координационного окружения иона металла.

Выводы

Разработана методика определения строения и свойств комплексных соединений меди(II) путем совместного применении методов потенциометрического титрования и обработки электронных спектров, показана возможность ее использования для сложных систем, содержащих как бинарные, так и разнолигандные комплексные соединения.

При исследовании систем медь(II) – N-фосфонометилглицин – валин методами потенциометрического титрования и электронной спектроскопии определены значения констант устойчивости разнолигандных комплексов: Cu(PMG)Val2– и Cu(HPMG)Val–. Обнаружено, что образованию соединений Cu(H2PMG)(HVal)+ и Cu(HPMG)(HVal) препятствует большая устойчивость при низких рН бискомплексов с HPMG2- и H2PMG-, способными образовывать хелатные комплексы, в отличие от нейтральной формы валина. Большая устойчивость комплекса Cu(PMG)Val2– по отношению к Cu(PMG)24– может быть объяснена вхождением в координационную сферу иона металла хелатообразующего валинат-иона, занимающего два места в экваториальной плоскости комплекса.Тройной комплекс устойчив за счет тридентатного характера связывания глифосат-аниона.

По данным электронных спектров в комплексе CuPMG24- одна из донорных групп не принимает участие в связывании, а один из лигандов координирован бидентатно. В системе медь(II) - N-фосфонометилглицин - аминокислота возможно образование разнолигандных комплексов, имеющих высокую устойчивость, что необходим учитывать при моделировании процессов, протекающих в биологических системах с участием иона металла и глифосата.

Установлено, что в комплексообразовании меди(II) с 2-[2-гидроксифенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином и 2-[2-гидрокси-5-нитрофенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином участвуют азометиновые формы лигандов, при этом образуются соединения CuL2 с координацией по фенольной и азометиновой группам обоих лигандов. Методом разложения электронных спектров на Гауссовы составляющие определены энергии d-d переходов, проведен расчет параметров взаимодействия в рамках модели углового перекрывания и установлен порядок расположения орбиталей центрального атома по энергиям: .

На основании эмпирического отнесения полос поглощения в ИК спектре соединения Cu(HGala)2·4H2O определено строение координационного узла. Пофрагментным расчетом частот и форм нормальных колебаний для галактаровой кислоты и комплексного соединения с медью(II) подтверждено участие α-гидроксильной и карбоксильной групп галактаровой кислоты в координации иона меди(II), определены силовые постоянные связей металл-лиганд. Показано, что расчет колебательного спектра исследуемых соединений для фрагмента молекулы может заменить расчет полной структуры молекулы.

Результаты диссертационной работы изложены в следующих публикациях:

Болотин С.Н., Заплатина Н.П., Скляр А.А., Панюшкин В.Т. Компьютерный анализ спектров ЭПР сложных равновесных систем // Мат. IV международной научно-практической конференции «Компьютерные технологии в науке, производстве, социальных и экономических процессах». Новочеркасск: ЮРГТУ, 2003. Ч. 3 С. 13.

Болотин С.Н., Скляр А.А., Панюшкин В.Т. Компьютерный анализ спектров ЭПР жидких растворов при наличии сложных равновесий // Тезисы докладов VII Международного семинара по магнитному резонансу (спектроскопия, томография и экология). Ростов-на-Дону, 2004. С. 132-133.

Болотин С.Н., Скляр А.А., Трудникова Н.М. Математическое моделирование химических равновесий по данным оптической спектроскопии // Мат. IV международной науч.-практ. конференции «Моделирование. Теория, методы и средства». Новочеркасск: ЮРГТУ, 2004. Ч. 2. С. 47-48.

Болотин С.Н., Панюшкин В.Т., Николаенко И.А., Скляр А.А. Комплексообразование меди(II) с L-гистидином в водном растворе по данным спектров ЭПР // Журнал неорганической химии. 2004. Т. 49. №. 11. С. 1838-1842.

Скляр А.А., Болотин С.Н., Трудникова Н.С. Колечко Д.В. Программа обработки спектральных данных комплексов переходных металлов // Сборник тезисов докладов «Информационно-вычислительные технологии в решении фундаментальных научных проблем и прикладных задач химии, биологии, фармацевтики и медицины (ИВТН-2004)». М.: Открытые системы, 2004. С. 34.

Скляр А.А., Болотин С.Н., Апенышева Т.Е., Пушкарева К.С., Буков Н.Н. Определение энергий взаимодействия металл - лиганд комплексов меди(II) с производными дигидробензаксазина методом анализа электронных спектров поглощения // Сборник тезисов докладов «Информационно-вычислительные технологии в решении фундаментальных научных проблем и прикладных задач химии, биологии, фармацевтики и медицины (ИВТН-2005)». – М.: Открытые системы, 2005. С. 58.

Скляр А.А., Апенышева Т.Е., Болотин С.Н., Колоколов Ф.А., Пушкарева К.С., Буков Н.Н. Геометрия комплексного соединения меди(II) с 2-[2-гидрокси-5-нитрофенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином в растворе хлороформа // Тезисы докладов XXII Международной Чугаевской конференции по координационной химии 2005. С. 495-496.

Панкова О.С., Трудникова Н.М., Скляр А.А., Болотин С.Н. Спектрофотометрическое исследование разнолигандных комплексов меди(II) c серином, валином и аспарагиновой кислотой // Тезисы докладов XV Российской студенческой научной конференции «проблемы теоретической и экспериментальной химии». Екатеринбург 2005. С. 170.

Пащевская Н.В., Болотин С.Н. Скляр А.А., Трудникова Н.М., Буков Н.Н., Панюшкин В.Т. Исследование комплексообразования в системе медь(II) - N-фосфонометилглицин - валин. // Журнал неорганической химии. 2005. Т. 50. № 12. С. 2107 – 2112.

Скляр А.А., Болотин С.Н., Панюшкин В.Т. Программа для расчета спектральных характеристик и содержания комплексных соединений в растворе по данным ЭПР и электронных спектров. Свидетельство об официальной регистрации программы для ЭВМ №2005610034.

Скляр А.А., Болотин С.Н.. Программа гауссиан анализа электронных спектров (ГАЭС). Свидетельство об официальной регистрации программы для ЭВМ №2005611573.

Paschevskaya N.V., Bolotin S.N., Sklyar A.A., Trudnikova N.M., Bukov N.N., Panyushkin V.T. Binary and ternary complexes of copper(II) with N-phosphonomethylglycine and valine // Journal of Molecular Liquids. 2006. V. 126. N 1-3, P. 89-94.

Апенышева Т.Е., Буков Н.Н., Скляр А.А., Болотин С.Н., Пушкарева К.С. Строение комплексных соединений меди(II) с производными дигидробензоксазина в растворе хлороформа // Координационная химия. 2006. Т. 32. №6. С. 350 – 353.

Скляр А.А., Колоколов Ф.А., Болотин С.Н. Программа для расчета частот и форм нормальных колебаний сложных молекул. Свидетельство об официальной регистрации программы для ЭВМ №2006610413.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно