это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Авторы: Лабекина И. А., Гаврилов В. И., Середнев М. А., Никитин А. А.
Физические свойства минералов
Учебное пособие дает представление об основных физических свойствах минералов, таких как спайность, твердость, цвет, плотность и др., необходимых для макроскопического определения минералов. Свойства проиллюстрированы на примере экспонатов геологического музея НГУ.
Физические свойства минералов имеют существенное значение для их макроскопической диагностики. Свойства минерала зависят от его строения и химического состава. Главнейшими физическими свойствами являются цвет, блеск, плотность, твердость, спайность и т. д.
Цвет – способность минерала отражать или пропускать через себя ту или иную часть видимого спектра.
Цвет минерала может быть обусловлен:
Элементы-хромофоры могут окрашивать минералы в разные цвета в зависимости от их валентности, концентрации, присутствия других химических элементов и соединений и пр.
Fe3+ – красно-бурый ( сидерит Fe CO3, лимонит Fe2O3 n H2O, гидрогётит FeOOH n H2O)
Fe2+ – зеленый ( анапаит Ca2Fe2+[PO4]2 4H2O)
Mn3+ – розовый ( родонит Ca Mn4v [Si3O9])
Cr3+ – зеленый ( уваровит Ca3Cr2[SiO4]3) и красный ( рубин Al2O3), в зависимости от содержания окиси хрома
Cr6+ – оранжевый ( крокоит Pb [CrO4])
Cu2+ – зеленый ( малахит Cu2[CO3]2 OH2) и синий ( азурит Cu3[CO3]2 OH2), в зависимости от количества кристаллизационной воды
Co2+ – розовый ( эритрин Co3[AsO4]2 8H2O)
Ni2+ – зеленый и желтый ( гарниерит Ni [Si4O10] (OH)4 4H2O)
V3+ – зеленый ( смарагдит Ca2(Mg, Fe2+)5[Si8O22]OHv2)
Ti4+ – синий ( сапфир Al2O3), в присутствии ионов гидроксила и наличии железа
Дефектами кристаллической структуры обусловлена, например, голубая и синяя окраска галита (NaCl), возникающая в результате радиоактивного облучения K40, Rb87.
Примером окраски минерала механической примесью другого вещества может служить зеленый кварц ( празем ), цвет которого обусловлен мельчайшими включениями чешуек зеленого хлорита или иголочек актинолита. Механическая примесь гематита часто вызывает красную или бурую окраску минералов, например галита и сильвина, агатов .
В отдельных случаях окраска минерала может быть вызвана иризацией и побежалостью.
При описании минералов обычно используется физическая шкала цветов в сочетании с бытовой.
Цвет черты – цвет минерала в порошке на белом фоне. Для определения цвета черты используют неглазурованную поверхность фарфора (бисквит). По сравнению с окраской минералов цвет черты является более постоянным, вследствие чего имеет важное диагностическое значение.
Минералы с металлическим блеском, как правило, имеют черную черту с разными оттенками, минералы со стеклянным блеском – белую, реже слабоокрашенную. Цвет минерала часто не совпадает с цветом его черты.
Пример:
пирит – цвет минерала соломенно-желтый, черта черная
халькопирит – цвет минерала латунно-желтый, черта черная с зеленоватым оттенком
гематит – цвет минерала стально-серый, черта вишнево-красная
магнетит – цвет минерала черный, черта черная
актинолит – цвет минерала зеленый, черта белая
Блеск – способность минерала отражать свет. Интенсивность и характер блеска зависит от показателя преломления (N), отражательной способности (R) и характера поверхности, от которой отражается свет. При условии, что свет отражается от ровной гладкой поверхности (грани, плоскости спайности), выделяют следующие типы блеска по возрастанию яркости:
Кроме основных типов блеска выделяют:
У минералов, обладающих явно выраженной ориентировкой элементов строения, возникает отлив:
Прозрачность – способность минерала пропускать через себя свет. Оценивается на качественном уровне путем просмотра минерала на просвет. По степени прозрачности минералы условно делят на:
Спайность – способность минерала раскалываться по определенным кристаллографическим направлениям с образованием гладких параллельных поверхностей, называемых плоскостями спайности. Спайность обусловлена внутренней структурой минерала и не зависит от внешней формы кристалла или зерна минерала.
Спайность в минерале проходит по направлениям, параллельным плоским сеткам с максимальной ретикулярной плотностью атомов, но наиболее слабо связанным между собой.
Чтобы охарактеризовать спайность определяют:
Степень совершенства спайности определяют по следующей условной шкале:
Ряд минералов не имеет спайности (магнетит и т. д.).
В зависимости от простой кристаллографической формы кристалл может раскалываться по одному, двум, трем и более направлениям:
Отдельность– расколы кристаллов по плоскостям их физической неоднородности. Плоскостями отдельности могут быть:
В отличие от спайности отдельность проявляется по всему кристаллу, расколы в случае отдельности более грубые и четкие.
Излом – раскол минерала в направлениях, где нет спайности. Различают изломы:
Твердость – степень сопротивления минерала механическому воздействию (давлению, сверлению, царапанию, шлифованию и т.п.) В обычной минералогической практике определяют относительную твердость путем царапанья одного минерала другим. Для этого используют шкалу Мооса, в которой имеется 10 эталонных минералов, пронумерованных в порядке увеличения твердости:
| относит. тверд. | минералы | твердость кг/мм2 |
1 2 3 4 5 6 7 8 9 10 | Тальк Гипс Кальцит Флюорит Апатит Полевой шпат Кварц Топаз Корунд Алмаз | 2,4 36 109 189 536 795 1120 1427 2060 10060 |
Ступени шкалы Мооса неравномерны. Для точных измерений используют метод вдавливания в минерал алмазной пирамидки, твердость определяют по отношению величины нагрузки к площади полученного отпечатка (кг/мм2), прибор называется склерометр.
Твердость кристаллов иногда неодинакова на разных его гранях или направлениях (анизотропия свойств). Например, у кианита ( дистена ) в направлении удлинения твердость 4,5-5 , а в перпендикулярном удлинению – 6,5-7. При определении абсолютной твердости (кг/мм2) , учитывая анизотропию даже у минералов кубической сингонии, строят «розетки твердости».
Иногда для определения твердости используют подручные «эталоны», хотя они и неточны:
Плотность минералов изменяется от 0,8–0,9 (у природных кристаллических углеводородов) до 22,7 г/см3 (у осмистого иридия).
Плотность определяется формулой p = m/V, где m – масса тела (m=F/g), V – объем.
При макроскопическом определении минералов она оценивается приблизительным сравнением в руке, на основании чего минерал можно отнести к одной из условных групп плотности:
Преобладают минералы с плотностью 2,5–4,0 г/см3.
Плотность минералов возрастает:
Минералы переменного химического состава имеют непостоянную плотность.
Минералы обладают и другими свойствами, такими как магнитность, люминесценция, ковкость, хрупкость, упругость, радиоактивность, растворимость и др.
Форма кристаллов
Облик кристаллов (форма) – это общий вид кристалла. Исходя из того, что любое тело в пространстве имеет три измерения, выделяют следующие основные типы форм кристаллов:
Широко распространены и переходные между этими основными типами формы:
Кроме того, существуют сложные формы кристаллов, например кристаллические дендриты.
Габитус кристаллов– более строгий термин, определяющий облик кристалла по доминирующим на нем граням и соотношению размеров кристалла в трех его измерениях.
Физические свойства минералов.
Физические свойства минералов имеют большое значение не только для их использования, но и для диагности (определения). Они зависят от химического состава и типа кристаллической структуры. Физические свойства могут представлять собой скалярную величину, т.е постоянны во всех направлениях кристаллической решетки, или быть векторными. К последним, могут у отдельных минералов и их агрегатов, относится твердость, спайность, оптические свойства.
Плотность.
Плотность минералов измеряется в граммах на см3 (г/см3) и в значениях, у разных минералов, колеблется от 1 (жидкие битумы) до 23 (осмистый иридий). Оснавная масса минералов имеет плотность от 2,5 до 3,5, что определяет среднюю плотность земной коры в 2,7 - 2,8 г/см3.
Минералы по плотности условно можно разделить на три группы:
Некоторые минералы легко узнаются по большой плотности (барит - 4,5, церрусит - 6,5). Минералы, содержащие тяжелые металлы, имеют большую плотность. Наибольшую плотность в мире минералов имеют самородные элементы - медь, серебро, золото, минералы группы платины.
В минералах одного и того же состава плотность определяется характером упаковки атомов в структурной ячейке кристалла. Наиболее яркие примеры: алмаз (3,5) и графит (2,2) - оба образованы из одного и того же вещества - углерода, но имеют различные кристаллические структуры. Другой пример: кальцит, имеет состав Ca[CO3], плотность 2,6 - 2,8 и арагонит, того же состава, но уже плотностью 2,9 - 3.0 г/см3.
Для минералов, представляющих изоморфные ряды (структурное замещение атомов), увеличение или уменьшение плотности пропорционально изменению химического состава. Пример: в изоморфном ряду оливинов от форстерита Mg[SiO4] до фаялита Fe[SiO4] плотность увеличивается от 3,20 до 4, 35 г/см3.
Удельные веса (плотность) минералов определяются в основном двумя способами:
Методику исследования плотности этими методами опишем в отдельной статье.
Удельный вес мелких зернышек минерала определяется с помощью так называемого пикнометра или тяжелых жидкостей и весов Вестфаля, описываемых в специальных руководствах.
Существует еще несколько менее распространенных методов:
Зная химический состав минерала можно математически вычислить его плотность по формуле:
где P - плотность в г/см3; AW - сумма атомных масс атомов в элементарной ячейке и V – объем элементарной ячейки в нм3. Коэффициент 1,6602 х 10-24 (значение, обратное числу Авогадро) представляет собой единицу атомной массы, выраженную в граммах, а для перевода объема ячейки в см3 необходимо ее объем в нм3 умножить на 10-21.
Для иллюстрации рассчитаем плотность галита; его ячейка содержит 4NaCl и представляет собой кубическую элементарную ячейку с а = 0,564 нм:
Такой расчет часто полезен для проверки результатов химического анализа минералов, с одной стороны, и результатов измерений плотности и размера элементарной ячейки – с другой.
Спайность.
Спайность – способность минерала раскалываться при ударе или другом механическом воздействии по определенным кристаллографическим плоскостям.
Спайность связана со структурой кристалла и характером атомных связей. Вдоль плоскостей спайности силы связи оказываются более слабыми, чем вдоль других направлений. Плоскости спайности всегда обладают высокой плотностью атомов и во всех случаях параллельны возможным граням кристалла. Так, спайность пироксенов и амфиболов также непосредственно связана с их структурой, которая содержит цепочки кремнекислородных тетраэдров. Как видно из рисунков (рис.11.31 и 11.41) спайность возникает по плоскостям между цепочками.
Спайность выявляют, прослеживая регулярные системы трещин в прозрачных минералах, таких как флюорит или кальцит, либо ровные отражающие плоскости, образующиеся при раскалывании кристаллов, что наблюдается у полевых шпатов, пироксенов и слюд. Следы плоскостей спайности играют важную роль определяющих направлений при оптическом изучении ксеноморфных зерен под микроскопом, не имеющих хорошо выраженных граней.
Степень совершенства проявления спайности исследуемого минерала определяется путем ее сопоставления с данными следующей 5-ступенчатой шкалы:
При раскалывании минералов, лишенных спайности или обладающих плохой спайностью, возникают незакономерные поверхности излома, который по внешнему облику характеризуется как:
При обработке камня наличие спайности облегчает получение плоских поверхностей вдоль ее плоскостей, но затрудняет шлифовку и полировку других плоскостей, поскольку при обработке могут возникать трещины спайности. Кроме того, спайность может стать причиной сколов минералов в процессе их использования.
Твердость.
Под твердостью минерала понимается его сопротивление механическому воздействию более прочного тела. Твердость минерала является важным диагностическим признаком.
Существует несколько методов определения твердости. В минералогии действует шкама Мооса. Построенная на основе эталонных образцов, расположенных в порядке увеличения твердости.
| тв. | эталонный минерал | тв. | эталонный минерал |
| 1 | Тальк Mg3[Si4O10](OH)2 | 6 | Ортоклаз K[AlSi3O8] |
| 2 | Гипс Ca[SO4]*2H2O | 7 | Кварц SiO2 |
| 3 | Кальцит Ca[CO3] | 8 | Топаз Al2[SiO4](F, OH)2 |
| 4 | Флюорит CaF2 | 9 | Корунд Al2O3 |
| 5 | Апатит Ca5[PO4]3(F, Cl) | 10 | Алмаз C |
Значение шкалы Мооса являются относительными и определены условно, методом царапания. Т.е. кварц оставляет царапину на полевых шпатах (ортоклаз), но не может поцарапать топаз. Процесс определения твердости минерала по шкале Мооса происходит так: если, например апатит (тв. = 5) царапает исследуемый минерал, а при этом сам образец может царапать флюорит (тв. = 4), то твердость образца определяем = 4,5.
Эталоны шкалы Мооса могут заменить следующие предметы: лезвие стального ножа - твердость около 5,5, напильник - около 7, простое стекло - 5.
Точные, научные количественные данные твердоти минералов получают с помощью склерометров, и расчитываю после определения глубины вдавливания алмазной пирамидки в исследуемый образец. Точные показатели твердости для эталонных образцов, такие:
| Тальк | 2,4 | Полевой шпат | 795 |
| Гипс | 36 | Кварц | 1120 |
| Кальцит | 109 | Топаз | 1427 |
| Флюорит | 189 | Корунд | 2060 |
| Апатит | 536 | Алмаз | 10060 |
Твердость в кристаллах может быть анизотропной (разной в различных направлениях кристаллической решетки). Характерным примером являются кристаллы дистена, твердость которых на плоскости совершенной спайности вдоль удлинения = 4,5, а поперек = 6.
Прочие физические свойства минералов.
Некоторые дополнительные физические свойства минералов применяются для их диагностики. Перечислим основные.
Хрупкость.
Под хрупкостью понимается свойство минералов крошиться под давлением или при ударе. Например: самородная сера и алмаз - очень хрупкие минералы.
Ковкость.
Ковкость минералов в том, что они могут быть легко расплющены на тонкие пластинки. Пример: самородное золото, медь и т.п.
Гибкость.
Гибкость, свойство изгибаться, характерна для многих минералов. Так, гибкие листочки имеют кристаллы молибденита, хлоритов, талька, гидрослюд, но только у обычных слюд (мусковита, биотита и других) листочки в то же время и упругие, - они восстанавливают первоначальное положение при снятии напряжения.
Люминисценция.
Некоторые минералы при воздействии на них ультрафиолетовых, катодных или рентгеновских лучей могут излучать свет. Один и тот же минерал может люминесцировать разными цветами и обнаруживать люминисценцию разного рода. После снятия возбудителя, по длительности свечения различают: флюорисценцию (свечение прекращается сразу после снятия) и фосфорисценцию (свечение еще продолжается некоторое время). Особенно интенсивную люминисценцию минералов можно видеть в ультрафиолетовых лучах. Например: флюорит светится - фиолетовым цветом, шеелит - голубым, кальцит - оранжево-желтым. Немногие минералы могут люминисцировать при физическом воздействии на них: при нагревании (термолюминисценция), при раскалывании (триболюминисценция).
Портативная ультрофиолетовая лампа.
Радиоактивность.
Радиоактивностью называется превращение неустойчивых изотопов одного хим. элемента в изотопы другого с излучением элементарных частиц. Радиактивностью обладают минералы, содержащие радиоактивные элементы, в основном уран, радий и торий. Определяют радиактивность при помощи электроскопов, ионизационных камер и др. Действие которых оснавано на определении ионизации воздуха, вызываемой радиоактивным распадом элементов.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!