Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод ветвей и границ

Тип Реферат
Предмет Информатика
Просмотров
1273
Размер файла
17 б
Поделиться

Ознакомительный фрагмент работы:

Метод ветвей и границ

Общее описание метода ветвей и границ организации полного перебора возможностей.
Решение задачи о коммивояжере методом ветвей и границ: основная схема.
Пусть - конечное множество и - вещественно-значная функция на нем; требуется
найти минимум этой функции и элемент множества, на котором этот минимум
достигается.
Когда имеется та или иная дополнительная информация о множестве, решение этой
задачи иногда удается осуществить без полного перебора элементов всего множества
M. Но чаще
всего полный перебор производить приходится. В этом случае обязательно возникает
задача, как лучше перебор организовать.
Метод ветвей и границ - это один из методов организации полного перебора. Он
применим не всегда, а только тогда, когда выполняются специфические
дополнительные условия на множество M и минимизируемую на нем функцию. А именно,
-
предположим, что имеется вещественно-значная функция j на множестве подмножеств
множества M со следующими двумя свойствами:
для (здесь - множество, состоящее из единственного элемента );
2) если и , то .
В этих условиях можно организовать перебор элементов множества M с целью
минимизации функции на этом множестве так:
разобьем множество M на части (любым способом) и выберем ту из его частей W1, на
которой функция j минимальна; затем разобьем на несколько частей множество W1 и
выберем ту из его частей W2, на которой минимальна функция j; затем разобьем W2
на несколько частей и выберем ту из них, где минимальна j, и так далее, пока не
придем к какому-либо одноэлементному множеству .
Это одноэлементное множество называется рекордом.
Функция j, которой мы при этом выборе пользуемся, называется оценочной.
Очевидно, что рекорд не обязан доставлять минимум функции f; однако, вот какая
возможность возникает сократить перебор при благоприятных обстоятельствах.
Описанный выше процесс построения рекорда состоял из последовательных этапов, на
каждом из которых фиксировалось несколько множеств и выбиралось затем одно из
них. Пусть - подмножества множества M, возникшие на предпоследнем этапе
построения рекорда, и пусть множество оказалось выбранным с помощью оценочной
функции. Именно при разбиении и возник рекорд, который сейчас для
определенности обозначим через . Согласно сказанному выше, , ; кроме того, по
определению оценочной функции, .
Предположим, что ; тогда для любого элемента m множества M, принадлежащего
множеству , будут верны неравенства; это значит, что при полном переборе
элементов из M элементы из уже вообще не надо рассматривать. Если же
неравенство не будет выполнено, то все элементы из надо последовательно
сравнить с найденным рекордом и как только отыщется элемент, дающий меньшее
значение оптимизируемой функции, надо им заменить рекорд и продолжить перебор.
Последнее действие называется улучшением рекорда.
Слова метод ветвей и границ связаны с естественной графической интерпретацией
всего изложенного: строится многоуровневое дерево, на нижнем этаже которого
располагаются элементы множества M, на котором ветви ведут к рекорду и его
улучшениям и на котором часть ветвей остаются “оборванными”, потому что их
развитие оказалось нецелесообразным.
Мы рассмотрим сейчас первый из двух запланированных в этом курсе примеров
применения метода ветвей и границ - решение задачи о коммивояжере. Вот ее
формулировка.
Имеется несколько городов, соединенных некоторым образом дорогами с известной
длиной; требуется установить, имеется ли путь, двигаясь по которому можно
побывать в каждом городе только один раз и при этом вернуться в город, откуда
путь был начат (“обход коммивояжера”), и, если таковой путь имеется, установить
кратчайший из таких путей.
Формализуем условие в терминах теории графов. Города будут вершинами графа, а
дороги между городами - ориентированными (направленными) ребрами графа, на
каждом из которых задана весовая функция: вес ребра - это длина соответствующей
дороги. Путь, который требуется найти, это - ориентированный остовный простой
цикл минимального веса в орграфе (напомним: цикл называется остовным, если он
проходит по всем вершинам графа; цикл называется простым, если он проходит по
каждой своей вершине только один раз; цикл называется ориентированным, если
начало каждого последующего ребра совпадает с концом предыдущего; вес цикла -
это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются
все возможные ребра); такие циклы называются также гамильтоновыми.
Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос
о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай
задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не
является полным, то его можно дополнить до полного недостающими ребрами и
каждому из добавленных ребер приписать вес ¥, считая, что ¥ - это “компьютерная
бесконечность”, т.е. максимальное из всех возможных в рассмотрениях чисел. Если
во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то
при наличии у него ребер с весом ¥ можно будет говорить, что в данном, исходном
графе “цикла коммивояжера” нет. Если же в полном орграфе легчайший гамильтонов
цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе.
Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов
с весовой функцией. Сформулируем теперь это в окончательном виде:
пусть - полный ориентированный граф и -
весовая функция; найти простой остовныйориентированный цикл (“цикл
коммивояжера”) минимального веса.
Пусть конкретный состав множества вершин и
- весовая матрица данного орграфа, т.е.
,
причем для любого .
Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее
всего проводить на фоне конкретного примера. Пользуясь введенными здесь
обозначениями, мы проводим это описание в следующей лекции.
Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести
строку этой матрицы означает выделить в строке минимальный элемент (его называют
константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в
результате в этой строке на месте минимального элемента окажется ноль, а все
остальные элементы будут неотрицательными. Аналогичный смысл имеют слова
привести столбец матрицы.
Слова привести матрицу по строкам означают, что все строки матрицы приводятся.
Аналогичный смысл имеют слова привести матрицу по столбцам.
Наконец, слова привести матрицу означают, что матрица сначала приводится по
строкам, а потом приводится по столбцам.
Весом элемента матрицы называют сумму констант приведения матрицы, которая
получается из данной матрицы заменой обсуждаемого элемента на ¥. Следовательно,
слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого
нуля, а затем фиксирован нуль с максимальным весом.
Приступим теперь к описанию метода ветвей и границ для решения задачи о
коммивояжере.
Первый шаг. Фиксируем множество всех обходов коммивояжера (т.е. всех простых
ориентированных остовных циклов). Поскольку граф - полный, это множество
заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на
этом множестве оценочной функции: это число равно сумме констант приведения
данной матрицы весов ребер графа. Если множество всех обходов коммивояжера
обозначить через G, то сумму констант приведения матрицы весов обозначим через
j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее
через M1; таким образом, итог первого шага:
множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M1.
Второй шаг. Выберем в матрице M1 самый тяжелый нуль; пусть он стоит в клетке ;
фиксируем ребро графа и разделим множество G на две части: на часть , состоящую
из обходов, которые проходят через ребро , и на часть , состоящую из обходов,
которые не проходят через ребро .
Сопоставим множеству следующую матрицу M1,1: в матрице M1 заменим на ¥ число в
клетке . Затем в полученной матрице вычеркнем строку номер i и столбец номер j,
причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец,
приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная
приведенная матрица и будет матрицей M1,1; только что запомненную сумму констант
приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(),
сопоставим множеству .
Теперь множеству тоже сопоставим некую матрицу M1,2. Для этого в матрице M1
заменим на ¥ число в клетке и полученную в результате матрицу приведем. Сумму
констант приведения запомним, а полученную матрицу обозначим через M1,2.
Прибавим запомненную сумму констант приведения к числу j(G) и полученное число,
обозначаемое в дальнейшем через j(), сопоставим множеству .
Теперь выберем между множествами и то, на котором минимальна функция j (т.е.
то из множеств, которому соответствует меньшее из чисел j() и j().
Заметим теперь, что в проведенных рассуждениях использовался в качестве
исходного только один фактический объект - приведенная матрица весов данного
орграфа.По ней было выделено определенное ребро графа и были построены новые
матрицы, к которым, конечно, можно все то же самое применить.
При каждом таком повторном применении будет фиксироваться очередное ребро графа.
Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть
строку и столбец, в ней надо заменить на ¥ числа во всех тех клетках, которые
соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам,
которые проходят через уже отобранные ранее ребра.
К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то
же самое и так далее, пока это возможно.
Доказывается, что в результате получится множество, состоящее из единственного
обхода коммивояжера, вес которого равен очередному значению функции j; таким
образом, оказываются выполненными все условия, обсуждавшиеся при описании метода
ветвей и границ.
После этого осуществляется улучшение рекорда вплоть до получения окончательного
ответа.




Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно