Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Гибридные интеллектуальные человеко-машинные вычислительные системы и когнитивные процессы

Тип Реферат
Предмет Информатика и программирование
Просмотров
539
Размер файла
69 б
Поделиться

Ознакомительный фрагмент работы:

Гибридные интеллектуальные человеко-машинные вычислительные системы и когнитивные процессы

Гибридные интеллектуальные человеко-машинные вычислительныесистемыи когнитивные процессы

М.Д. Сеченов

Процесс информатизации как в нашей стране, так и за рубежом сопровождается широким распространением информационно- поисковых, советующих, проектирующих и других систем в различных областях человеческой деятельности. Постоянно растущая потребность в автоматизации обработки всё увеличивающихся объёмов информации, развитие вычислительной техники и активизация роли человека как элемента системы обусловливают необходимость развития человеко-машинных вычислительных систем (ЧМВС) с целью повышения их эффективности. Анализ общей тенденции развития показывает, что наиболее перспективным направлением является создание интеллектуальных самоорганизующихся систем. Однако существующие методы и средства проектирования ЧМВС и управления ими не позволяют интегрировать интеллектуальные функции в достаточной мере. В этой связи многообещающим является поиск законов эволюции естественных и искусственных систем. В [1] показано, что радикальным направлением интеллектуализации является концепция на основе парадигмы «эволюционной интеллектуальной технологии», предполагающей комплексное использование методов и средств эволюционного синтеза имитационных моделей и их адаптация в задачах выделенной прикладной области.

Методология развития и совершенствования искусственных систем должна учитывать «опыт» и законы эволюции естественных. Однако, здесь неизбежна и взаимная адаптация. Методология взаимной адаптации помогла выявить многоструктурность процессов принятия решений. Она позволила переходить от внешних, технических, к внутренним, психологическим, факторам сложности интеллектуальной деятельности и отбирать ограниченное число действительно релевантных факторов, отражающих влияние внешних и внутренних условий труда, психологическую структуру и стратегию деятельности, тесно коррелирующих с критериями сложности, эффективности, надёжности, напряжённости деятельности [2].

В этой связи весьма важна разработка практических принципов взаимной адаптации человека с новейшей техникой и условиями труда, создание теории и методов синтеза и применение эффективных компьютеризованных систем адаптивного взаимодействия людей между собой и с ЭВМ по принципу гибридного интеллекта (ГИ).

Термин гибридный интеллект был впервые введён В.Ф. Вендой в 1975 году в докладе на конференции по семантическим вопросам искусственного интеллекта, а основы теории систем гибридного интеллекта изложены в сборнике по инженерной психологии в 1977 году. Теория ГИ систем, включая естественные, искусственные и комбинированные, может быть построена на основе законов, общих для всех видов систем. В качестве таковых В.Ф. Вендой предложен ряд законов взаимной адаптации и трансформации систем. Взаимная адаптация акцентирует внимание на изменениях, которые претерпевают объекты, становясь компонентами системы, на закономерностях этих изменений в ходе становления, развития, существования, трансформации структур системы. Взаимная адаптация человека и ЭВМ направлена на максимальное раскрытие индивидуальных способностей, компенсацию психофизиологических недостатков, учёт интересов лица принимающего решения. Этот процесс также ведёт к наиболее полному использованию возможностей вычислительной техники, заложенных в ней знаний, умений, находок и открытий предшественников.

Принципиальное отличие методологии системы гибридного интеллекта от традиционной методологии инженерной психологии состоит в том, что вместо анализа вариантов и попытки выбрать из них оптимальный проводится синтез разных вариантов решений, объединения скрытых и непосредственных участников решения [3]. По- существу, здесь можно вести речь о наборах популяций и применении к ним генетических алгоритмов.

Система гибридного интеллекта может рассматриваться как этап в переходе от случайной неорганизованной творческой деятельности в решении задач нового класса к автоматизированному решению этих задач в системах искусственного интеллекта. Такая эволюция способов и систем решения задач рассмотрена на примере САПР А.А. Самарским.

Следует отметить что системы гибридного интеллекта (применительно к ЧМВС) рассматриваются как комбинированные системы, интегрально включающие в себя искусственный и естественный интеллекты.

Искусственный интеллект - это интеллектуальная система, реализующая априорные стратегии Sa. Другими словами, искусственный интеллект - это система, для которой соблюдается максимальное значение коэффициента корреляции априорных и реальных стратегий (Sp) решения задач : . Естественный интеллект может функционировать в интервале -1<=<=1. При естественный интеллект моделирует искусственный интеллект.

Комбинирование естественных и искусственных интеллектов в составе гибридного интеллекта производится следующим образом [3].

Определяются , , (или кусочные интервалы) {- }, {- } и т.д., где - минимально допустимая эффективность системы; {- } - интервал задач, решаемых системой.

Выявляются достоверные и соответствующие им интервалы {- }, в которых соблюдается условие .

Строятся характеристические кривые всех как функции эффективности в зависимости от факторов сложности задач .

Определяются все интервалы , в которых .

Выявляются оставшиеся интервалы , в которых . Для этих интервалов подбираются дополнительные априорные стратегии - программы автоматического решения по типу искусственного интеллекта. Когда все априорные стратегии подобраны, то для этих интервалов подбираются люди и соответствующие им реальные стратегии , которые могут обеспечить в этих интервалах эффективность .

Все априорные стратегии и реальные стратегии проверяются на ассоциативность, так чтобы были возможны взаимопереходы между ними, причём трансформационные точки ответственных переходов должны соответствовать достаточно высокой эффективности.

Ответственными считаются такие переходы между стратегиями, которые имеют выходное значение. Например, если в ходе работы системы значение непрерывно изменяется от , при котором действует и определяет эффективность всей системы стратегия , до , при котором действует и определяет эффективность всей системы стратегия , то переходная эффективность стратегий и должна быть не ниже заданной: .

Условие 5 можно назвать условием высокопроизводительной трансформации.

Главное следствие закона трансформаций состоит в том, что если система, имеющая определённую структуру, достигла стабильного максимума своей эффективности при данной структуре, то повысить эффективность системы можно, только изменив её структуру ; но переход возможен лишь через любое общее состояние для структур, эффективность системы в котором ниже, чем в максимуме имеющейся структуры. Иначе говоря, при переходе на другую структуру, в том числе и существенно более перспективную по возможному при ней максимуму эффективности, возникает тенденция снижения эффективности на период, необходимый для трансформации старой структуры в новую. Основанная на этом законе трансформационная теория обучения, развития, динамики систем значительно расширяет возможности анализа закономерностей и прогнозирования индивидуального развития и системного прогресса.

Следует отметить, что решение задачи интеллектуализации ЧМВС связано с проведением широкого спектра исследований по влиянию человеческого фактора на процесс функционирования системы, с разработкой методов и средств системной идентификации человека (его кодовой или модельной интерпретации), а также с разработкой методов и средств адаптации процесса функционирования системы на различных уровнях его структуризации с учётом особенностей человека.

На основании вышеизложенного в [1] предлагается концепция интеллектуализации глобальной информационно-вычислительной системы (ГИВС), обеспечивающей : включение в состав системы человека в качестве активного интеллектуального элемента ; возможность интеллектуального взаимодействия человека и системы ; реализацию функций самоорганизации ГИВС в условиях постоянного слежения за динамикой процессов, протекающих в макросистеме и состоянием её элементов.

Дальнейшее развитие эти идеи получили в [4]. Здесь рассматривается необходимость обеспечения устойчивого функционирования системы на основе совершенствования процесса и технологических средств формирования, получения, распознавания, обучения, запоминания и использования знаний. В основе лежит разработка целостного представления процесса накопления знаний в технологии при учёте эволюционного единства её с макросистемой. Это приводит к концепции вложенности всех компонент макросистемы, таких её подсистем, как интегрированные базы знаний (БЗ) различного уровня, с одной стороны, и к вложенности когнитивных процессов (процессов приобретения знаний), обеспечивающих интеграцию, - с другой. Используется следующая схема вложенности систем приобретения знаний : объект познания (макросистема), субъект познания (система), средство отражения объекта в субъекте (технология) и результат познания (БЗ).

На рис. представлена структура системы познания, в которой осуществляется процесс приобретения знаний [4].

Обратные связи продуктивных действий

ИБЗ Zm

Dm Ds Dt ИБЗ Zs

Yt

Макро- Ym Система Ys Технология БЗ

система

М S T Zt

Im Is Is It It

Обратные связи интеллектуальной интеграции

Рис.1 Структура процесса познания макросистемы

Здесь база знаний Zt (БЗ Zt) на технологическом уровне является подсистемой технологии Т, на системном уровне технология Т и её БЗ Zt составляют интегрированную базу знаний (подсистему) системы S (ИБЗ Zs) и, наконец, на макросистемном уровне система S и ИБЗ Zs составляют интегрированную базу знаний макросистемы М (ИБЗ Zm).

Процессы взаимодействия между компонентами и соответствующие им связи разбиваются на два типа:

– связи, определяющие процесс приобретения знаний, соответственно: прямые и обратные связи взаимодействия макросистемного (Ym, Im), системного (Ys, Is) и технологического (Yt, It) уровней;

– связи, отражающие деятельностное взаимодействие элементов структуры на основе результатов познания, соответственно: связи продуктивного взаимодействия макросистемного Dm, системного Ds и технологического Dt уровней. Связи, определяющие процесс приобретения знаний, назовём интеллектуальными.

Прямые интеллектуальные связи обеспечивают систему нижележащего уровня информацией об изменении проблемной ситуации в системе вышележащего уровня. Обратные же интеллектуальные связи обеспечивают информацией о предыстории познания, которая включает информацию об изменениях в соответствующих базах знаний. Через прямые интеллектуальные связи осуществляется процесс передачи знаний в базу знаний того же уровня: от M через Ym в ИБЗ Zm, от S через Ys в ИБЗ Zs, от T через Yt в БЗ Zt. Этот процесс назовём процессом интеллектуализации.

Прямые (Ym, Ys) и обратные (Is, It) интеллектуальные связи, а также обратные связи продуктивных действий (Dm, Ds, Dt) определяют процессы накопления и суммирования знаний на каждом уровне - процессы макросистемной, системной и технологической интеллектуальной интеграции. Таким образом, макросистемная интеллектуальная интеграция осуществляется при учёте предыстории Im от ИБЗ Zm, предыстории Is от ИБЗ Zs и связи продуктивных действий Dm, что позволяет макросистеме M выдать в качестве результата интеграции новое знание Ym. Системная интеграция осуществляется при учёте предыстории Is от ИБЗ Zs, предыстории It от БЗ Zt и связи продуктивных действий Ds, что приводит к результату интеграции в системе S нового знания Ys, выдаваемого в ИБЗ Zs. Интеллектуальная технологическая интеграция происходит по предыстории от БЗ Zt и под действием связи продуктивных действий Dt, что выражается в результате Yt, выдаваемого в БЗ Zt. Таим образом, процесс интеллектуального взаимодействия смежных уровней определяется как процесс интеллектуальной интеграции.

В каждом контуре протекают свои процессы интеллектуализации и интеграции. В качестве примера приведём основные процессы, выделяемые в технологическом контуре:

P1(It) - процесс самоадаптации технологии T к предыстории It;

P2(Dt) - процесс самокоррекции на основе продуктивных действий относительно параметров, структур, организации технологии T;

P3(It, Dt) - процесс адаптивной самокоррекции технологии T (совместное выполнение процессов P1 и P2).

Можно показать, что объединение процессов P1¸P3 может рассматриваться как процесс самопознания в условиях замкнутости, т.е. использования знаний только внутреннего контура.

Кроме того, технологический контур как элемент системы S испытывает воздействие Ys (в другом временном темпе), что обусловливает следующие процессы:

P4(Ys) - процесс обучения технологии T как элемента системы;

P5(It, Ys) - процесс адаптивного обучения технологии T;

P6(Dt, Ys) - процесс корректирующего обучения технологии T (коррекция параметров и/или структуры на основе обучения);

P7(It, Dt, Ys) - процесс корректирующего адаптивного обучения на основе знания системы с адаптацией технологии T к предыстории It (одновременное выполнение процессов P4-P6).

Таким образом, в технологическом контуре процесс познания включает совместную (интеграция) и раздельную реализацию семи процессов P1-P7, сложным образом взаимодействующих между собой в процессе интеллектуальной интеграции.

В заключение необходимо упомянуть ещё одну монографию [5], где с позиций системной вложенности рассматривается происхождение и развитие интеллектуальных самоорганизующихся (СО) объектов. Проведённый анализ показал, что самоорганизующимися, т.е. творящими природу, а следовательно в той или иной мере интеллектуальными, могут быть только те объекты, которые как минимум способны распознавать, обучаться и запоминать. Автором предлагается рекуррентная теория самоорганизации, использующая ряд ещё не совсем привычных понятий. В работе сформулирован тезис о бесконечной множественности в природе типов и экземпляров СО объектов, позволивший поставить вопрос о единых механизмах генезиса их внутренней структуры, свойств и принципов функционирования. Показано, что главным свойством СО объектов является их способность быть создателем самих себя, сообщества себе подобных и внешних по отношению к ним несамоорганизующихся объектов, т.е. обменных квантов. В процессе обмена этими квантами друг с другом СО объекты и реализуют феномен «создателя».

Список литературы

Букатова И.Л., Макрусев В.В. Интеллектуализация глобальных информационно-вычислительных систем : основы, концепция, проблемы. М.: ИРЭ РАН.- Препринт №7 (595), 1994.- 37 с.

Венда В.Ф. Инженерная психология и синтез систем отображения информации.- М. : Машиностроение, 1982. -400 с.

Венда В.Ф. Системы гибридного интеллекта : Эволюция, психология, информатика. - М. : Машиностроение, 1990. - 448 с.

Букатова И.Л., Макрусев В.В. Когнитивные процессы эволюционирующих систем. М.: ИРЭ РАН.- Препринт №10 (598), 1994. - 32 с.

Клименко А.В. Основы естественного интеллекта. Рекуррентная теория самоорганизации. Версия 3. Ростов н/Д.: Изд-во Рост. ун-та, 1994. - 304 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно