Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Блочно-временной алгоритм фильтрации геолокационных данных

Тип Реферат
Предмет Информатика и программирование
Просмотров
845
Размер файла
16 б
Поделиться

Ознакомительный фрагмент работы:

Блочно-временной алгоритм фильтрации геолокационных данных

Блочно-временной алгоритм фильтрации геолокационных данных

Н.В. Бейлина

Постановка задачи

Геолокационные данные, описывающие перемещение наблюдаемого объекта, представляют собой последовательность кортежей вида (lon, lat, time,...), где lon, lat — географические координаты объекта (широта и долгота), time — время получения координаты, а многоточием обозначены дополнительные данные, такие как высота над уровнем моря, мгновенная скорость и так далее.

Геолокационные данные, поступающие в информационные системы от датчиков GPS/Глонасс, зачастую избыточны: к примеру, многие датчики передают координаты один раз в секунду, тогда как для реального применения достаточно данных с точностью до минуты, а иногда существенно реже.

Предположим, что в информационную систему передаются лишь широта, долгота, штамп времени (по 64 бита), высота над уровнем моря и скорость (по 16 бит). Без учета накладных расходов каждая запись имеет размер 28 байт. Однако, если данные поступают раз в секунду, за сутки от одного наблюдаемого объекта в систему поступит около 2,3 МБайт данных, 840 Мбайт в год. Понятно, что построение различных аналитических отчетов по таким объемам может быть затруднительно для небольших организаций, не обладающих оборудованием с соответствующей вычислительной мощностью.

С учетом того, что информация, по эмпирическим подсчетам, избыточна приблизительно в 60 раз, весьма актуальным является вопрос фильтрации поступающих в информационную систему данных, по возможности осуществляемый одновременно с приемом данной информации либо с небольшой задержкой, но небольшими блоками.

Очевидно, что (lon, lat), расположенные в порядке возрастания времени, представляют собой вершины ломаной. Для упрощения ломаных линий часто используется алгоритм Рамера — Дугласа — Пекера [1; 2]. Он отличается простотой реализации, высокой эффективностью, а его сложность оценивается как O(n2). Именно этот алгоритм используется в большинстве геоинформационных систем для отображения конечному пользователю траектории движения наблюдаемого объекта на карте.

Формально алгоритм Рамера — Дугласа — Пекера можно применить к любой ломаной, т. е. к любой части имеющихся данных. Алгоритм сохраняет т. н. ’’характерные” точки ломаной, удаляя из нее те, что лежат на расстоянии, не превосходящем £ от прямой, соединяющей другие точки. Однако среди этих точек могут оказаться также и точки, несущие дополнительную смысловую нагрузку, например, точки длительного простоя наблюдаемого объекта или промежуточные точки на длинных прямолинейных участках магистралей — они являются излишними с точки зрения алгоритма Рамера — Дугласа — Пекера, но могут являться важным элементом для других бизнес-процессов предприятия, эксплуатирующего информационную систему.

Типичными ’потерями” при применении алгоритма Рамера — Дугласа — Пекера (и многих других алгоритмов упрощения ломаных) к данным геолокации являются:

потеря мест ’простоя” наблюдаемого объекта, когда становится невозможно определить, как долго на самом деле находился объект в окрестности некоторой точки;

потеря промежуточных точек наблюдаемого объекта при его движении по прямолинейному шоссе.

Это связано с тем, что алгоритм Рамера — Дугласа — Пекера учитывает лишь расстояния (в простейшем случае — на плоскости), но не учитывает время.

Кроме того, многие алгоритмы упрощения ломаных, и в частности алгоритм Рамера — Дугласа — Пекера, не являются поточными, т. е. требуют наличия всех входных данных сразу, в данном случае — всей ломаной, тогда как имеется необходимость в блочно-поточной фильтрации поступающих данных.

Цель данной работы — разработать простой блочно-временной алгоритм фильтрации геолокационных данных, который позволяет сохранять дополнительные характерные точки, такие как:

”точки простоя” наблюдаемого объекта,

”контрольные точки” по расстоянию и времени.

Таким образом, предлагается сначала выделить на треке ”точки простоя” и ”контрольные точки” и использовать их как точки разбиения исходной ломаной на подломаные, к каждой из которых уже применять классические алгоритмы упрощения ломаных, например, алгоритм Рамера — Дугласа — Пекера.

Алгоритм выделения ”точек простоя”

”Точка простоя” характеризуется тем, что в течение некоторого промежутка времени, не менее т, все координаты попали в окружность радиуса S, а все более ранние и более поздние точки лежат на расстоянии не менее S2 от этой окружности. Всю группу точек, попавшую в эту окружность, мы будем заменять не одной, а двумя точками: самой ранней и самой поздней. Таким образом, мы сохраним информацию о времени прибытия наблюдаемого объекта на стоянку и времени выезда со стоянки. Если же данная группа точек по времени попадает в диапазон т, мы заменим данную группу точек не двумя, а одной. Таким образом, кроме выделения ”точек простоя” данная часть алгоритма будет дополнительно фильтровать входные данные по принципу ”ближайший сосед”.

На вход алгоритма поступают геолокационные данные, которые накапливаются в буфере parking, пока радиус окрестности, описанной вокруг точек этого буфера, не превышает £.

for point in input_stream:

Если все точки помещаются в нужну окрестность - пусть помещаются if circle(parking + point).radius < delta:

parking.append(point)

если же новая точка не лезет, пора заканчивать else:

# если прошло больше tau - то это стоянка, добавляем первую и последнюю if parking.last - parking.first.time > tau: output.append(parking.first) output.append(parking.last) else: # время небольшое, сжимаем крайние точки в одну "среднюю"

midpoint = (parking.last + parking.first) / 2 output.append(midpoint)

очищаем парковку parking = []

и точку, которая не влезла в предыдущую парковку, кладем в новую parking.append(point)

Если использовать эффективный алгоритм нахождения радиуса описанной окружности, например [3], имеющий сложность O(n), то в худшем случае сложность предлагаемого алгоритма будет O(n2).

Недостатком данного алгоритма является возможность разрастания временного буфера parking, например в случае, если отслеживаемый объект слишком долго находится на стоянке. Однако и этот недостаток легко устраняется — достаточно лишь добавлять в parking только те точки, которые приводят к росту окрестности.

Если пожертвовать точностью и вместо окружности использовать прямоугольную окрестность, алгоритм, очевидно, будет иметь сложность O(n).

Реализация и апробация результатов

Алгоритм был реализован на языке Python и используется в составе программного комплекса ’Кто куда” (ООО ”Лаб М”) для фильтрации геолокационных данных от аппаратных GPS/Глонасс-трекеров, установленных на автомобилях, передвигающихся по г. Самара и области и передающих геоданные в среднем 10 раз в минуту.

Данные поступали в фильтр, выделяющий ”точки простоя”, с выхода этого фильтра — в промежуточный буфер. К данным в промежуточном буфере применялся алгоритм Рамера — Дугласа — Пекера, для блока данных между ”точками простоя” и ”контрольными точками”.

Данные записывались в базу данных со входа фильтра и с выхода фильтра. Эксплуатация показала не менее чем десятикратное снижение количества записываемых в базу данных геопозиций без ущерба для качества представления (при движении в городском режиме).

Списоклитературы

Ramer Urs. An iterative procedure for the polygonal approximation of plane curves // Computer Graphics and Image Processing. 1972. № 1(3). P. 244-256. (DOI: 10.1016/S0146-664X(72)80017-0).

Douglas David, Peucker Thomas. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature // The Canadian Cartographer. 1973. № 10(2). P. 112-122. (DOI: 10.3138/FM57-6770-U75U-7727).

Emo Welzl. Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer Science // Lecture Notes in Computer Science. 1991. V. 555. P. 359-370.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно