Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод Стрілянини

Тип Реферат
Предмет Информатика
Просмотров
893
Размер файла
101 б
Поделиться

Ознакомительный фрагмент работы:

Метод Стрілянини

Вступ

На даний момент велика роль в розвитку сучасного світу відводиться підвищенню технічного рівня обчислювальної техніки, пристроїв і засобів автоматизації. Це передбачає розвиток виробництва і широке використання промислових роботів, систем автоматичного управління з використанням мікропроцессорів і мікро-ЕОМ, створення гнучких автоматизованих виробництв. Розв'язок цих задач потребує широкого упровадження в інженерну практику методів обчислювальної математики.

Обчислювальна математика заснована на чисельних методах, придатних до застосування при розрахунках на ЕОМ. Сучасні ЕОМ дозволили дослідникам значно підвищити ефективність математичного моделювання складних задач науки і техніки. Нині методи досліднення проникають практично в усі сфери людської діяльності, а математичні моделі стають засобами пізнання.

Значення математичних моделей неперервно зростає у зв'язку з тенденціями до оптимізації технічних пристроїв і технологічних схем планування експерименту. Реалізація моделей на ЕОМ здійснюється за допомогою різноманітних методів обчислювальної математики, яка неперервно удосконалюєтьтся.

В даній роботі розглянуто розв’язання крайової задачі методом “стрілянини” (на прикладі диференційного рівняння другого порядку).


2. Теоретичні відомості

Диференційним рівнянням називають рівняння, що зв'язує незалежну змінну х , шукану функцію y=f(x) та її похідні y', y'',…, y(n).

В залежності від числа незалежних змінних та типу похідних, що входять до них диференційні рівняння діляться на звичайні диференційні рівняння, що мають одну незалежну змінну та похідні по ній, та рівняння в частинних похідних, маючих декілька незалежних змінних та похідні (частинні) по ним.

Існує багато методів для знаходження розв’язків диференційних рівнянь через елементарні чи спеціальні функції. Такі методи називають аналітичними, чи класичними, але в більшості задач вони чи зовсім непридатні, чи приводять до дуже складних розрахунків. При заданні коефіціентів чи функцій в диференційних рівняннях у вигляді таблиць експерементальних даних використання класичних методів принципово неможливо. Це обумовлює важливість чисельних методів, що розглядають рішення диференційних рівнянь, це є основою при складанні алгоритмів та програм для ЕОМ.

Звичайне диференційне рівняння має нескінчену множину розв’язків. Для відшукання якогось конкретного розв’язку потрібні додаткові умови. Ці умови можуть бути різними. У випадку, коли додаткові умови задаються при одному значенні незалежної змінної, має місце задача Коші (задача з початковими умовами). Якщо ж умови задаються при двох чи більше значеннях незалежної змінної, то задача називається крайовою. В задачі Коші додаткові умови називаються початковими, а в крайовій – граничними. При рішенні цих задач використовуються різні методи та алгоритми.

Сформулюємо задачу Коші. Нехай дано диференційне рівняння: та початкова умова . Потрібно знайти функцію на відрізку від до , таку, що задовольняє як дане рівняння, так і початкову умову.

Крайову задачу розглянемо на прикладі звичайного диференційного рівняння другого порядку при граничних умовах . Методи розв’язків рівнянь більш високих порядків аналогічні.

2.1 Методи розв’язку задачі Коші.

В основі чисельних методів розв’язку диференційних рівнянь лежить розклад функції в ряд Тейлора в околі вихідної точки : , де - відстань (крок) між вихідною точкою та точкою , в якій шукають розв’язок.

Причому в різних методах враховується різна кількість членів розкладу, що визначає точність розрахунків. Вважають, що порядок похобки рівний , якщо існує таке число , та , де- локальна помилка; - крок дискретизації.

Число не залежить від номера кроку та його велечини, а визначається похідними і довжиною інтервала. При апроксимації розв’язку рядами Тейлора воно зв’язане зі степінню членів ряду, що відкидаються.

Методи розв’язку задачі Коші можна розділити на дві групи: однокрокові, в яких для знаходження слідуючої точки на кривій потрібна інформація лише про один попередній крок (методи Ейлера та Рунге-Кутта); багатокрокові (прогнозу та корекції), в яких для знаходження слідуючої точки на кривій потрібна інформація більш ніж про одну із попередніх точок.

2.2Вибір методу розв'язання задачі Коші

Порівнюючи ефективність однокрокових і багатокрокових методів, виділяють такі особливості:

1. Багатокрокові методи вимагають більшого об'єму пам'яті ЕОМ, тому що оперують більшою кількістю початкових даних.

2. При використанні багатокрокових методів існує можливість оцінки похибки на кроці, тому значення кроку обирається оптимальним, а
в однокрокових — з деяким запасом , що знижує швидкодію.

3.При однаковій точності багато крокові методи вимагають меншого обсягу обчислень. Наприклад, в методі Рунге-Кутта четвертого порядку точності доводиться обчислювати чотири значення функції на кожному кроці, а для забезпечення збіжності методу прогнозу і корекції того ж порядку точності - достатньо двох.

4.Однокрокові методи на відміну від багатокрокових дозволяють одразу почати розв'язання задачі ("самостартування") і легко змінювати крок в процесі обчислень.

Перед початком розв'язання задачі необхідно провести перевірку на "жорсткість" і у випадку позитивного результату використати спеціальні методи. Якщо задача Коші дуже складна, то зазвичай перевага надається методу прогнозу і корекції, який має до того ж більш високу швидкодію. Початок розв'язання задачі при цьому проводиться за допомогою однокрокових методів. Якщо для обчислення чергового значення уі вимагається більш ніж дві ітерації або якщо помилка зрізання дуже велика, то необхідно зменшити крок Н. З іншого боку при дуже малій похибці зрізання можна збільшити крок, тим самим підвищити швидкодію, але при цьому весь процес розв'язання треба починати спочатку. Інколи на практиці вимагається мінімізувати час підготовки задачі до розв'язання. Тоді доцільно використовувати методи Рунге-Кутта.

На закінчення слід відзначити, що велике значення для ефективного розв'язання задачі мають досвід, інтуїція і кваліфікація користувача як при постановці задачі, так і в процесі вибру методу розробки алгоритму і програми для ЕОМ. При цьому часто зручно користуватись вже готовими програмними засобами, які є в наявності (наприклад, в пакетах МАРLЕ, МАТНЕМАТIКА).

2.3Методи розв'язання крайових задач

Методи розв'язання крайових задач розглядаються на прикладі звичайного диференціального рівняння другого порядку

при граничних умовах у(а) = А , у(в) - В. Методи розв'язання крайових задач розділяють на дві групи: методи, що побудовані на заміні розв'язання крайової задачі розв'язанням декількох задач Коші (методи "стрілянини") та різницеві методи.

2.4 Метод "стрілянини"

Якщо звичайне диференціальне рівняння другого порядку - лінійне, то воно має вигляд:

при у(а) = А , у(в) = В.

Крайову задачу можна звести до задачі Коші введенням додаткової початкової умови, крім у(а)=А вводиться у'(а)=.

Знайшовши розв'язок (х), можна поставити іншу початкову умову у(а)= і отримати інший розв'язок у2 (х). Якщо а , причому , то розв'язок:

буде задовольнятиобидвіпочатковіумови.

При розв'язуванні нелінійного звичайного диференціального
рівняння методами "стрілянини" крайова задача зводиться до
розв'язування декількох задач Коші, послідовно вводячи в початкові і
умови значення :

у(а)=А і у'(а)=а

і намагаючись знайти розв'язок, який задовольняє умову у(в)=В,

При цьому алгоритм досягнення мети будується на основі одного з методів оптимізації. Однак цей шлях розв'язання задачі пов'язаний з великими обчислювальними труднощами, і тому у випадку нелінійних |диференціальних рівнянь перевага надається різницевим методам.


3.Вибір методу інструментальних засобів вирішення задач.

Розв’язок даної задачі реалізовано на ЕОМ, причому було складено алгоритм та програму в середовищі BorlandDelphi 7. Програма є досить простою та зрозумілою для користувача середнього рівня

Для нормального функціонування програми необхідна наявність наступних апаратних засобів :

1. IBMPC/XT сумісний комп'ютер;

2. CPU не нижче Intel P-100;

Операційна система MS-Windows 95 та вище;

3. 8 Mb ОЗУ;

4. Монітор, що підтримує режим 640x480, 16 кольорів;

4. Функціональне призначення

Розроблена програма дозволяє розв’язати вказану крайову задачу:

,

методом стрілянини з кроками 0,1 і 0,05.

Результати виводяться у текстовій формі.


5.Розробка та опис логічної частини програми

В даній курсовій роботі було розроблено програмне забезпечення для розв’язання та дослідження заданого диференційного рівняння. Розв’язок ведеться за різницевим алгоритмом.

Кодування на мові Паскаль проводилося з застосуванням інтуїтивно-зрозумілих назв змінних та процедур. Також відступи та табуляція дозволяє досить легко збагнути структуру програми.

В інтерфейсі також не допущено зайвих елементів.


6.Керівництво оператору

Для завантаження програми необхідно запустити програмний файл Project1.exe. При цьому зявиться вікно (рис. 1), де можна задати початкові умови, переглянути постановку задачі а також ознайомитися з розв’язком при натисненні кнопки Розв’язок.

Рисунок 1. Інтерфейс програми.


7.Результати обчислень

Результати обчислень:

Крок: 0,1000000000

X | Y

-----------

0,000|1,0000000000

0,100|0,3273336200

0,200|0,1072995400

0,300|0,0356159580

0,400|0,0131109860

0,500|0,0085276729

0,600|0,0151296980

0,700|0,0408859800

0,800|0,1180330500

0,900|0,3434084400

1,000|1,0000000000

Похибка не б_льше: 0,0050000000

Результати обчислень:

Крок: 0,0500000000

X| Y

-----------

0,000|1,0000000000

0,050|0,5993159300

0,100|0,3592222800

0,150|0,2153842700

0,200|0,1292593800

0,250|0,0777695550

0,300|0,0471172200

0,350|0,0290879730

0,400|0,0188492490

0,450|0,0136550000

0,500|0,0121092040

0,550|0,0137906880

0,600|0,0191384160

0,650|0,0295660470

0,700|0,0478356090

0,750|0,0787890890

0,800|0,1306317000

0,850|0,2171069500

0,900|0,3611400200

0,950|0,6009154100

1,000|1,0000000000

Похибка не більше: 0,0012500000


Висновки

При виконані даної курсової роботи я навчився розв’язувати крайові задачі за допомогою методу стрілянини. Було відмічено, що метод досить важко приміняти до комп’ютерних обчислень через необхідність врахування специфіки кожної задачі.

Література

1. В.Т.Маликов, Р.Н.Кветный . Вычислительные методы и применение ЭВМ . Учебное пособие -- К.: Выща шк. Головное издательство,1989.-213 с .

2. В.Е.Краскевич, К.Х.Зеленский, В.И.Гречко . Численные методы в инженерных исследованиях. -- К.: Выща шк. Головное издательство, 1986.--263 с .

3. Самарський А.А. Вступ в чисельні методи. - М.: Наука,

1987. – 286 с.


Додаток A

Алгоритм роботи програми



Додаток Б

Лістинг програми

unitUnit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, Buttons, Math;

type

TForm1 = class(TForm)

GroupBox2: TGroupBox;

BitBtn1: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

Memo1: TMemo;

LabeledEdit1: TLabeledEdit;

procedure BitBtn1Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

uses Unit2;

{$R *.dfm}

procedure TForm1.BitBtn1Click(Sender: TObject);

begin

Form2.ShowModal;

end;

procedure TForm1.BitBtn2Click(Sender: TObject);

var

i, j, n :integer;

h:Extended;

ybeg, yend, t: Extended;

alpha1, alpha2, beta1, beta2 : extended;

b:array of Extended;

a:array of array of Extended;

y,y1,y2:array of Extended;

x:array of Extended;

M0,M1,M2,err:Extended;

k,k0,k1,k2,k3,l,l0,l1,l2,l3,zn,xn:extended;

function f(x,y,dy:extended):extended;

begin

result:=100*y;

end;

begin

try

h:=StrToFloat(LabeledEdit1.Text);

n:=round(1/h)+1;

ybeg:=1; yend:=1;

SetLength(y,n);

SetLength(y1,n);

SetLength(y2,n);

y1[0]:=ybeg;

y2[0]:=ybeg;

alpha1:=yend;

alpha2:=yend;

zn:=alpha1; xn:=0;

for i:=1 to n-1 do begin

l0:=h*f(xn,y1[i-1],zn);

k0:=h*zn;

l1:=h*f(xn+h/2,y1[i-1]+k0/2,zn+l0/2);

k1:=h*(zn+l1/2);

l2:=h*f(xn+h/2,y1[i-1]+k1/2,zn+l1/2);

k2:=h*(zn+l2/2);

l3:=h*f(xn+h,y1[i-1]+k2,zn+l2);

k3:=h*(zn+l3);

k:=(k0+2*k1+2*k2+k3)/6;

l:=(l0+2*l1+2*l2+l3)/6;

y1[i]:=y1[i-1]+k;

zn:=zn+l;

xn:=xn+h;

end;

beta1:=y1[n-1]; beta2:=beta1;

while (beta1=beta2) do begin

alpha2:=alpha2-h;

zn:=alpha2; xn:=0;

for i:=1 to n-1 do begin

l0:=h*f(xn,y2[i-1],zn);

k0:=h*zn;

l1:=h*f(xn+h/2,y2[i-1]+k0/2,zn+l0/2);

k1:=h*(zn+l1/2);

l2:=h*f(xn+h/2,y2[i-1]+k1/2,zn+l1/2);

k2:=h*(zn+l2/2);

l3:=h*f(xn+h,y2[i-1]+k2,zn+l2);

k3:=h*(zn+l3);

k:=(k0+2*k1+2*k2+k3)/6;

l:=(l0+2*l1+2*l2+l3)/6;

y2[i]:=y2[i-1]+k;

zn:=zn+l;

xn:=xn+h;

end;

beta2:=y2[n-1];

end;

for i:=0 to n-1 do

y[i]:=1/(beta1-beta2)*((1-beta2)*y1[i]+(beta1-1)*y2[i]);

with Memo1.Lines do begin

clear;

Add('Результатиобчислень: ');

Add(' Крок: '+FloatToStrF(h,ffFixed,8,10));

Add(' X | Y ');

Add(' ----------- ');

for i:=0 to n-1 do

Add(' '+FloatToStrF(h*i,ffFixed,3,3)+'|'+FloatToStrF(abs(y[i]),ffFixed,8,10));

Add(' Похибка не б_льше: '+FloatToStrF(h*h/2,ffFixed,8,10));

end;

except

on EConvertError do

Application.MessageBox('Неправильно введен_ дан_', 'Увага');

end;

end;

end.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно