Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Системы массового обслуживания

Тип Реферат
Предмет Информатика и программирование
Просмотров
654
Размер файла
71 б
Поделиться

Ознакомительный фрагмент работы:

Системы массового обслуживания

Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Чувашский государственный университет им. И.Н. Ульянова"

Факультет Информатики и вычислительной техники

Кафедра математического и аппаратного обеспечения информационных систем

Системы массового обслуживания

Выполнил: ст. гр. ИВТ 11-06

Григорьев Д.Г.

Проверила: преподаватель

Козловская Д.В.

Чебоксары 2010


Содержание

1.Задание

2. Общие сведения

2.1 Системы массового обслуживания с ожиданием

2.2 Двухфазные системы массового обслуживания с ожиданием

2.3 Системы с неограниченным потоком заявок

3. Выполнение задания

4. Программа

5. Результаты

Литература


1. Задание

ЭВМ условно можно разделить на 2 части: устройство ввода (1-я фаза) и все остальные (2-я фаза). Известно, что интенсивность потока заявок, поступающих на устройство ввода, равна l заявок в минуту (поток заявок пуассоновский). Если устройство ввода занято, то заявки ожидают его освобождения. После обслуживания в первой фазе, заявки поступают во вторую фазу и обслуживаются в том же порядке. Время обслуживания в каждой фазе имеет экспоненциальное распределение со средним Т1 и Т2 в каждой фазе соответственно.

Оценить основные показатели качества функционирования системы. Повторить решение при предположении, что время обслуживания во второй фазе имеет неэкспоненциальное распределение (средние длительность обслуживания в обоих случаях равны). Сравнить полученные результаты.

lТ1Т2Коэффициент вариации обслуживания во второй фазе
50,150,140,7; 0,8; 0,9.

2. Общие сведения

Под многофазовыми системами понимаются такие, в которых процесс обслуживания проходит пофазно. Поступающая в систему заявка вначале обслуживается в первой фазе, а по окончании обслуживания переходит во вторую и т. д. Примеров многофазных систем можно привести много. Например, технологические потоки сборки различных технических изделий: когда в одном цехе производится сборка одних узлов, после того, как собраны эти узлы, изделие поступает в следующий цех, где продолжается сборка следующих узлов и т. д.,— представляет собой пример многофазовой системы обслуживания. Другим примером может служить группировка различных огневых средств со своими системами управления. Здесь сначала некоторые органы производят сбор и обработку поступающей информации о противнике и о своих войсках, затем обработанная информация поступает на пункт управления, где производится перераспределение, после чего огневые средства выполняют поставленную перед ними боевую задачу. Ремонт машин также производится последовательно. Например, сначала машина может поступить в цех по ремонту электрооборудования, затем в цех по ремонту двигателя или ремонту шасси и т. д.

Техническое обслуживание автобусов в автопарке может быть рассмотрено как многофазовое. Автобус по возвращении в парк должен пройти моечный пункт, после чего пройти техосмотр.

Рис.1. Схема 2-фазной системы

Как видно, вероятность обслуживания заявки системой не зависит от последовательности фаз. Это означает, что пропускная способность системы определяется ее узкими местами. Если производительность одной из фаз очень мала по сравнению с другими, то эта фаза и будет определять пропускную способность системы. Зависимости, определяющие вероятности состояний системы, были получены в предположении, что время обслуживания каждого прибора случайное и распределяется по показательному закону.

Однако в реальных системах массового обслуживания время, необходимое прибору для обслуживания одной заявки, может быть отличным от показательного.

2.1Системы массового обслуживания с ожиданием

Системы массового обслуживания с ожиданием распространены наиболее широко. Их можно разбить на две большие группы: разомкнутые и замкнутые. Эти системы определяют так же, как системы с ограниченным и неограниченным входящим потоком. К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на отладку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно. Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным.

2.2 Двухфазные системы массового обслуживания с ожиданием

Примером двухфазной системы массового обслуживания с ожиданием могут служить магазины, в которых, прежде чем получить товар, покупатель должен оплатить его стоимость в кассе. Этот пример является типичным, но не единственным в своем роде. Работа подобных систем массового обслуживания будет рассмотрена на примерах двухфазных одноканальных систем массового обслуживания с неограниченным и ограниченным потоком заявок.

2.3 Системы с неограниченным потоком заявок

Рассматривается работа системы массового обслуживания, состоящая из двух приборов разной производительности.

Время обслуживания приборами заявок подчинено показательному закону распределения с параметрами и соответственно для первого и второго приборов. Поступившее в систему требование вначале обслуживается первым прибором. Если он уже занят, то требование ожидает своей очереди до тех пор, пока все ранее пришедшие требования не будут обслужены. После обслуживания первым прибором требования поступают на второй. Так же как и в предыдущем приборе, они поступают на обслуживание, если второй прибор свободен. Если прибор занят, то требование становится в очередь. Для неограниченного пуассоновского входящего потока с плотностью можно написать уравнения состояний системы:

(1)

где - вероятность того, что в момент времени t оба прибора свободны;

- вероятность состояния системы, при котором в момент времени t в первой фазе находится требований (включая и те, которые обслуживаются), а во второй фазе - требований.

После решения уравнений получены характеристики, описывающие состояния системы массового обслуживания:

1. Вероятность того, что оба прибора (обе фазы) свободны от заявок:

где

2. Вероятность того, что в первой фазе находится одна заявка, а во второй ни одной:

3. Вероятность того, что во второй фазе имеется одна заявка, а в первой ни одной:

4. Вероятность того, что в первой фазе находится одна заявка, и во второй фазе тоже одна заявка:

5. Математическое ожидание числа заявок, находящихся в системе:


при этом среднее число заявок, находящихся в первой фазе, равно:

,

а во второй фазе:

, где

3. Выполнение задания

Введем несколько формул:

1. среднее время ожидания заявки в очереди:

2. среднее время пребывания заявки в системе:

3. среднее число заявок в системе:

где - среднее число заявок в очереди и .

Учитывая, что произвольная заявка, поступившая в систему в момент обслуживания, застает ее занятой с вероятностью R, можно записать:

(2)

Отсюда следует, что

Так как имеется 2 фазы то:

, (3)

с использованием соответственно для каждой их фаз.

Произведем вычисления для неэкспоненциального распределения, причем средние длительности обслуживания в обоих случаях равны.


Если выразить второй начальный момент через дисперсию, математическое ожидание и коэффициент вариации, то

,

где - коэффициент вариации, характеристика, показывающая степень нерегулярности потока заявок. Тогда среднее время ожидания

(4)

Выражение (4) используем, чтобы найти среднее время ожидания заявки во второй фазе, для первой же фазы используем выражение (2). Затем по формуле (3) находим среднее время пребывания заявки в системе.

Производим сравнение полученных результатов при экспоненциальном распределении и неэкспоненциальном распределении.

4. Программа

//---------------------------------------------------------------------------

#pragma hdrstop

#include <iostream.h>

#include <string.h>

#include <conio.h>

//---------------------------------------------------------------------------

#pragma argsused

int main(int argc, char* argv[])

{

float a1,a2,ly=5,T1=0.15,T2=0.14,M1,M2,M,P00,P10,P01,P11;

a1=ly*T1;

a2=ly*T2;

P00=(1-a1)*(1-a2);//обе фазы свободны от заявок

P10=a1*(1-a1)*(1-a2);//в 1-й фазе заявка,2-я свободна

P01=a2*(1-a1)*(1-a2);//в 2-й фазе заявка,1-я свободна

P11=a1*a2*(1-a1)*(1-a2);//обефазызаняты

M1=a1/(1-a1);//среднее число заявок,находящихся в 1-й фазе

M2=a2/(1-a2);//среднее число заявок,находящихся в 2-й фазе

M=M1+M2;//Математическое ожидание числа заявок,находящихся в системе

cout<<'n'<<"P00= "<<P00<<'n'<<"P10= "<<P10<<'n'<<"P01= "<<P01<<'n'<<"P11= "<<P11<<'n'<<"M1= "<<M1<<'n'<<"M2= "<<M2<<'n'<<"M= "<<M;

float toz1,toz2,tpreb1,tpreb2;//для экспон. и неэкспон. распределения соответственно

float R1,R2,k1=0.7,k2=0.8,k3=0.9;

R1=P10+P11;R2=P01+P11;

toz1=ly*(T1*T1/(2-2*R1)+T2*T2/(2-2*R2));

toz2=ly*(T1*T1/(2-2*R1)+T1*T1*(1+k1*k1+k2*k2+k3*k3)/(2-2*R2));

tpreb1=toz1+(a1+a2)/ly;

tpreb2=toz2+(a1+a2)/ly;

cout<<'n'<<"Srednee vremya ozidania zaavki v system pri eksponencialnom raspredelenii: "<<'n'<<toz1<<'n'<<"Srednee vremya ozidania zaavki v system pri neeksponencialnom raspredelenii: "<<'n'<<toz2<<'n'<<"Sravnenie: "<<'n'<<toz2/toz1<<'n';

cout<<'n'<<"Srednee vremya prebivania zaavki v system pri eksponencialnom raspredelenii: "<<'n'<<tpreb1<<'n'<<"Srednee vremya prebivania zaavki v system pri neeksponencialnom raspredelenii: "<<'n'<<tpreb2<<'n'<<"Sravnenie: "<<'n'<<tpreb2/tpreb1<<'n';

getch();

return 0;

}

//---------------------------------------------------------------------------

5. Результаты

Для заданных значений имеем:

1. значения характеристик, описывающих состояния системы массового обслуживания;

2. значения среднего времени ожидания заявки в системе при экспоненциальном и неэкспоненциальном распределении времени обслуживания для сравнения;

3. значения среднего времени пребывания заявки в системе при экспоненциальном и неэкспоненциальном распределении времени обслуживания для сравнения.

При сравнении мы видим, что при неэкспоненциальном распределении времени обслуживания среднее время ожидания заявки увеличилось в 2,1 раз по сравнению с экспоненциальным, а среднее время пребывания в системе примерно в 1,3 раз.

Следовательно, производительность при заданных значениях выше при экспоненциальном распределении времени обслуживания по сравнению с неэкспоненциальным.

Литература

1. Новиков О.А., Петухов С.И. Прикладные вопросы теории массового обслуживания. М., Изд-во "Советское радио", 1969.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно