Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Системи оптичного розпізнавання образів

Тип Реферат
Предмет Информатика и программирование
Просмотров
1424
Размер файла
26 б
Поделиться

Ознакомительный фрагмент работы:

Системи оптичного розпізнавання образів

Реферат

на тему:

“Системи оптичного розпізнавання образів”


На сьогоднішній день існує досить багато потужних програм по розпізнаванню символів, але слід зазначити, що здатність людини читати друкований текст низької якості дотепер перевершує здатності комп'ютера.

Кожен друкований текст має первинну властивість — шрифти, якими він надрукований. Виходячи з цього, існують два класи алгоритмів розпізнавання друкованих символів: шрифтовий та безшрифтовий. Шрифтові або шрифтозалежні алгоритми використовують апріорну інформацію про шрифт, яким надруковано букви. Це означає, що програмі повинна бути надана повноцінна вибірка тексту, надрукованого даним шрифтом. Програма вимірює й аналізує різні характеристики шрифту й заносить їх у свою базу еталонних характеристик. По закінченні цього процесу шрифтова програма оптичного розпізнавання символів готова до розпізнавання даного конкретного шрифту.

Недоліки зазначеного підходу:

- алгоритм повинен заздалегідь знати шрифт, що йому представляють для розпізнавання, тобто він повинен зберігати в базі різні характеристики цього шрифту;

- якість розпізнавання тексту, надрукованого довільним шрифтом, буде прямо пропорційна кореляції характеристик цього шрифту зі шрифтами, наявними в базі програми.

Ці фактори обмежують універсальність таких алгоритмів.

Для роботи програми розпізнавання необхідний блок настроювання на конкретний шрифт. Очевидно, що цей блок буде вносити свою частку помилок в інтегральну оцінку якості розпізнавання, або функцію встановлення шрифту доведеться покласти на користувача.

Програма, заснована на шрифтовому алгоритмі розпізнавання символів, вимагає від користувача спеціальних знань про шрифти взагалі, про їхні групи й відмінності один від одного, про шрифти, якими надруковано документ користувача. У випадку якщо паперовий документ не створений самим користувачем, а прийшов до нього ззовні, не існує загального способу довідатися, з використанням яких шрифтів був надрукований цей документ.

З іншого боку, у шрифтового підходу є перевага, завдяки якій його активно використовують й, очевидно, будуть використовувати в майбутньому. А саме, маючи детальну апріорну інформацію про символи, можна побудувати досить точні й надійні алгоритми розпізнавання. Взагалі, при побудові шрифтового алгоритму розпізнавання, на відміну від безшрифтового, надійність розпізнавання символу є інтуїтивно ясною й математично вираженою величиною. Ця величина визначається як відстань у якому-небудь метричному просторі від еталонного символу, пред'явленого програмі в процесі навчання, до символу, що програма намагається розпізнати.

Другий клас алгоритмів — безшрифтові або шрифтонезалежні, тобто алгоритми, що не мають апріорних знань про символи, що надходять до них на вхід. Ці алгоритми вимірюють й аналізують різні характеристики (ознаки), що властиві буквам як таким безвідносно шрифту й абсолютного розміру, яким вони надруковані. У граничному випадку для шрифтонезалежного алгоритму процес навчання може бути відсутнім. У цьому випадку характеристики символів вимірює, кодує й поміщає в базу програми сама людина. Однак, на практиці рідко зустрічаються випадки, коли такий шлях вичерпно вирішує поставлене завдання. Більш загальний шлях створення бази характеристик полягає в навчанні програми на вибірці реальних символів.

Hедоліком даного підходу є нижча якість розпізнавання, ніж у шрифтових алгоритмів. Це пов'язане з тим, що рівень узагальнення при вимірах характеристик символів набагато більший, ніж у випадку шрифтозалежних алгоритмів. Фактично це означає, що різні допуски й спрощення при вимірах характеристик символів для роботи безшрифтових алгоритмів можуть бути в 2-20 разів більші в порівнянні зі шрифтовими.

Переваги цього підходу тісно пов'язані з його недоліками. Основними перевагами є:

- універсальність. Це означає, з одного боку, можливість застосування цього підходу у випадках великої різноманітності символів, які можуть надійти на вхід системи; з іншого боку, за рахунок закладеної в них здатності узагальнювати, такі алгоритми можуть екстраполювати накопичені знання за межі навчальної вибірки, тобто стійко розпізнавати символи, на вигляд далекі від тих, які були присутні в навчальній вибірці.

- технологічність. Процес навчання шрифтонезалежних алгоритмів звичайно є більше простим й інтегрованим у тому розумінні, що навчальна вибірка не фрагментована на різні класи. При цьому відсутня необхідність підтримувати в базі характеристик різні умови спільного існування цих класів (некорельованість, незмішуваність, систему унікального іменування й т.п.). Проявом технологічності є також той факт, що часто вдається створити майже повністю автоматизовані процедури навчання.

- зручність у процесі використання програми. У випадку, якщо програма побудована на шрифтонезалежних алгоритмах, користувач не зобов'язаний знати що-небудь про сторінку, яку він хоче ввести в комп'ютерну пам'ять і повідомляти програму про ці знання. Також спрощується інтерфейс користувача програми за рахунок відсутності набору опцій і діалогів, що обслуговують навчання й керування базою характеристик. У цьому випадку процес розпізнавання можна представляти користувачеві як “чорний ящик” (при цьому користувач повністю не має змоги керувати, або якимось чином модифікувати хід процесу розпізнавання). У підсумку це приводить до розширення кола потенційних користувачів за рахунок включення в нього людей, що наділені мінімальною комп'ютерною грамотністю.

При розпізнаванні символів досить широко використовуються штучні нейронні мережі. Алгоритми, що використовують нейронні мережі для розпізнавання символів, часто будуються в такий спосіб. Зображення символу (растр), що є вхідним для розпізнавання, приводиться до деякого стандартного розміру. Як правило, використається растр розміром 16х16 пікселів.

Значення яскравості у вузлах нормалізованого растра використовуються, як вхідні параметри нейронної мережі. Число вихідних параметрів нейронної мережі дорівнює числу розпізнаваних символів. Результатом розпізнавання є символ, якому відповідає найбільше зі значень вихідного вектора нейронної мережі. Підвищення надійності таких алгоритмів пов'язано, як правило, або з пошуком більш інформативних вхідних ознак, або з ускладненням структури нейронної мережі.

Надійність розпізнавання й потреба програми в обчислювальних ресурсах багато в чому залежать від вибору структури й параметрів нейронної мережі. Зображення цифр приводяться до єдиного розміру (16х16 пікселів). Отримане зображення подається на вхід нейронної мережі, що має три внутрішніх рівні й 10 вузлів у верхньому рівні. Нижні шари мережі не є повнопов‘язаними. Вузли нижчого рівня спільно використовують загальний набір ваг. Все це, за задумом розроблювачів, повинне підвищити здатність нижчих рівнів мережі до виділення первинних ознак у зображеннях. Отримана в такий спосіб нейронна мережа має 1256 вузлів й 9760 незалежних параметрів. Для збільшення здатності мережі до узагальнення й зменшення обсягу необхідних обчислень і пам'яті проводиться видалення маловикористовуваних ваг. У результаті число незалежних параметрів зменшується в чотири рази. Навчання нейронної мережі проведено на наборі з 7300 символів, тестування на наборі з 2000 символів. Помилки розпізнавання становлять приблизно 1% на навчальному наборі й 5% на перевірочному.

Як вхідні параметри нейронної мережі, замість значень яскравості у вузлах нормалізованого растра можуть використовуватися значення, що характеризують перепад яскравості. Такі вхідні параметри дозволяють краще виділяти межі букви. Об‘єкти розпізнавання приводяться до розміру 16х16 пікселів. Після цього вони піддаються додатковій обробці з метою виділення ділянок з найбільшими перепадами в яскравості.

Одним із широко використовуваних методів підвищення точності розпізнавання є одночасне використання декількох різних розпізнавальних модулів і наступне об'єднання отриманих результатів (наприклад, шляхом голосування). При цьому дуже важливо, щоб алгоритми, використовувані цими модулями, були як можна більше незалежні. Це може досягатися як за рахунок використання розпізнавальних модулів, що використовують принципово різні алгоритми розпізнавання, так і спеціальним підбором навчальних даних.

Один з таких методів був запропонований кілька років тому і заснований на використанні трьох розпізнавальних модулів (машин). Перша машина навчається звичайним чином. Друга машина навчається на символах, які були відфільтровані першою машиною таким чином, що друга машина бачить суміш символів, 50% з яких були розпізнані першою машиною вірно й 50% невірно. Нарешті, третя машина навчається на символах, на яких результати розпізнавання 1-ої й 2-ий машин різні. При тестуванні розпізнавані символи подаються на вхід всім трьом машинам. Оцінки, одержувані на виході всіх трьох машин складаються. Символ, що одержав найбільшу сумарну оцінку видається як результат розпізнавання.

Як правило, алгоритм розпізнавання заснований на виділенні з растра із зображенням букви первинних ознак і наступному використанні штучної нейронної мережі для оцінки близькості вхідного зображення із символами із заданого набору букв. Результатом роботи є набір оцінок, що відбивають ступінь близькості розпізнаваного символу із символами із заданого набору символів. Набір розпізнаваних символів може включати букви й цифри. Вхідні матеріали для розпізнавання зображення символів перетворюються до єдиного розміру.

Відмінною рисою реалізованого алгоритму є використання нейронної мережі з досить великою кількістю вхідних ознак. Hа вихідному зображенні виділяються первинні ознаки, що характеризують перепади яскравості у вузлах растра. Нейронна мережа має один внутрішній рівень, що містить 100 вузлів і є загальнопов‘язаною, тобто кожен вузол внутрішнього рівня з'єднаний з усіма вхідними вузлами, а кожен вузол верхнього рівня з'єднаний з усіма вузлами внутрішнього рівня. Для зменшення обсягу обчислень при розпізнаванні для кожного розпізнаваного зображення символу використовуються не всі вхідні ознаки, а тільки частина, іншими словами вектор вхідних параметрів нейронної мережі є сильно розрідженим.

Навчання нейронної мережі відбувається звичайним чином, тобто використовується алгоритм зворотнього поширення помилки. Програма навчання одержує на вхід файл із зображеннями символів. При навчанні символи із цієї бази перебираються циклічно. Для кожного зображення з бази виділяються первинні ознаки, після чого виконуються прямий і зворотний проходи по мережі. Модифікація ваг мережі при навчанні виконується після кожного символу. Крок зміни ваг мережі постійний.

Для прискорення й поліпшення навчання погано розпізнавані символи проглядаються частіше за інші. Для цього використовується кеш, у якому зберігаються важко розпізнавані зображення. Растри для навчання вибираються як із вхідного файлу, так і з кешу. Вибір символу з кешу відбувається з урахуванням якості його розпізнавання, тобто погано розпізнавані символи вибираються частіше.

Крім того, при навчанні мережі використовується регулярізація ваг мережі, тобто вводиться їхнє експонентне згасання.

Якість розпізнавання залежить не тільки від алгоритмів, що використовуються програмами розпізнавання й навчання нейронної мережі, але й від того, яким чином навчалася нейронна мережа. На якість навчання нейронної мережі впливають наступні фактори: параметри бази з навчальними растрамиб, розмір, спосіб відбору растрів, порядок растрів у базі, наявність брудних символів і помилок у розмітці.

На різних етапах навчання можливе використання різних оптимізуючих факторів:

1. Крок зміни коефіцієнтів мережі.

2. Використання регуляризації мережі.

3. Історія навчання мережі.

4. Використання додаткового шуму й перекручувань символів.

5. Момент зупинки навчання. Бажано уникати як недостатнього навчання мережі, так і перенавчання.

6. Розмір кешу поганих растрів і відносна частота вибору растрів з навчальної бази даних і з кешу поганих символів.

Параметри навчання взаємозалежні й повинні вибиратися узгоджено. Так, наприклад, при невеликому розмірі навчальної бази використання перекручувань символів може приводити до поліпшення якості навчання, а при збільшенні розміру бази приводить до його погіршення. Використання кешу поганих символів на самому початку навчання не має особливого сенсу. Навпаки, після декількох проходів по базі з навчальними символами більша частина символів з бази розпізнається з дуже великою надійністю. Зміна ваг мережі відбувається головним чином за рахунок растрів, що втримуються в кеші поганих символів.

Регуляризація (тобто введення експонентного згасання ваг при навчанні) приводить до деякого погіршення якості розпізнавання. Однак використання дуже невеликого коефіцієнта згасання дозволяє підвищити стійкість мережі без помітних втрат для розпізнавання.

Для визначення найкращого моменту зупинки мережі можна періодично тестувати якість розпізнавання на невеликій незалежній базі даних.

Порівняння якості різних алгоритмів розпізнавання символів ускладнене тим, що відносне значення числа правильно розпізнаних символів істотно залежить від конкретної бази даних, на якій проводиться тестування. На якість розпізнавання також впливають: обсяг набору розпізнаваних символів, технологія навчання нейронної мережі, методика й алгоритми виділення первинних ознак, технологія підготовки навчальної бази даних й інші фактори.

Алгоритм може бути вдосконалений шляхом пошуку більш адекватного подання структурних ознак розпізнаваних символів. Використання більшої навчальної бази даних і збільшення пам'яті нейронної мережі також може дати деяке поліпшення якості розпізнавання.Проектована система має працювати у режимі, близькому до реального часу, а отже розроблюваний алгоритм має бути досить швидким і, в той же час, мати достатню точність розпізнання.

Для реалізації поставленої мети доцільно буде спочатку виділити на фотознімку номерний знак, а потім, використовуючи адаптовані до реальних умов існуючі алгоритми розпізнавання символів, розпізнати власне державний номер.

З цією метою вхідне зображення проходить етап первинної обробки наступним чином:

- пікселам, колір яких відповідає кольору тла номерного знаку (білий, жовтий, блакитний), привласнюється білий колір — $00FFFFFF у форматі RGB;

- пікселам, колір яких не відповідає кольору тла номерного знаку, привласнюється чорний колір — $00000000 у форматі RGB;

Цей етап можливо проводити як окрему процедуру попередньої обробки, так і в якості складової під час більш детального аналізу зображення.

Зображення аналізується починаючи з верхнього лівого кута і закінчується правим нижнім. Мета аналізу – визначити місця переходу між білою та чорною областю зображення, на їх основі визначити прямі лінії, а на перетині прямих ліній визначити кути отриманої рамки номерного знаку. Дослідним шляхом визначається така кількість послідовних точок переходу, що може трактуватися як пряма лінія. Слід зазначити, що перебирати все зображення попіксельно недоцільно. Після знаходження першого перепаду кольору пряма лінія визначається різницею між кольорами сусідніх пікселів. Для цього використаємо функцію:

де А – амплітуда, відстань по осі ординат аналізованого піксела від прогнозованої границі (підбирається експериментально); В – коефіцієнт розтягнення по осі абсцис (оптимальне значення В=4 – забезпечує прямолінійне діагональне сканування); С – забезпечує початкові умови для сканування (з якого піксела обчислюється перехід кольору).

Коефіцієнти А, В, С доцільно обирати серед множини натуральних чисел. Таким чином кількість аналізованих пікселів можливо скоротити в два рази.

Сучасні методи рішення поставленого завдання не враховують в достатній мері проблеми фіксації й розпізнавання текстових зображень і прийняття відповідних рішень.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
147998
рейтинг
icon
3130
работ сдано
icon
1353
отзывов
avatar
Математика
Физика
История
icon
142374
рейтинг
icon
5882
работ сдано
icon
2654
отзывов
avatar
Химия
Экономика
Биология
icon
95606
рейтинг
icon
2034
работ сдано
icon
1274
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
54 503 оценки star star star star star
среднее 4.9 из 5
ТГУ
Алексей, большое спасибо за проделанную работу! Работа была выполнена в течение суток! Все...
star star star star star
Московский университет имени С.Ю.Витте
Работа сделана качественно и в короткие сроки. Рекомендую. Буду еще обращаться за помощью....
star star star star star
Тольяттинский государственный университет
Отличный автор. работу выполнила в тот же вечер, оценено педагогом на высший балл...Рекоме...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Помощь на семестр

Онлайн-помощь, Численные методы

Срок сдачи к 7 окт.

только что

Компоновка каркаса

Курсовая, металлические конструкции

Срок сдачи к 28 окт.

11 минут назад

Проект организации коммуникационной кампании для организации

Курсовая, Организация коммуникационных кампаний, менеджмент

Срок сдачи к 5 окт.

11 минут назад

Выполнить курсовую работу

Курсовая, Возрастная психология и психология развития

Срок сдачи к 16 нояб.

11 минут назад

Однозонный реверсивный тиристорный электропривод постоянного тока с обратной связью по скорости и стабилизацией тока возбуждения двигателя.

Курсовая, Системы управления электромеханическими объектами (суэмо),электротехника, электроника

Срок сдачи к 13 окт.

11 минут назад

Френсис бекан Новая Атлантида

Доклад, Философия

Срок сдачи к 17 окт.

11 минут назад

Написать программу на С++

Курсовая, Програмирование И Алгоритмизация

Срок сдачи к 31 окт.

11 минут назад

Решаю все д. з, до 7 класса

Решение задач, математика

Срок сдачи к 6 окт.

11 минут назад

Решит 3 лабораторный

Лабораторная, Гидравлика

Срок сдачи к 6 окт.

11 минут назад

Тестирование

Тест дистанционно, Экстримальная психология

Срок сдачи к 9 окт.

11 минут назад

Задачи до 7 класса, 7 класс НЕ включительно

Решение задач, математика до 7 класса

Срок сдачи к 6 окт.

11 минут назад

Шпаргалки

Шпаргалка, все до 6 класса (6 класс включительно)

Срок сдачи к 6 окт.

11 минут назад

6 практик - строительство МТИ

Отчет по практике, строительство

Срок сдачи к 8 окт.

11 минут назад

Решить 4 задачи по аудиту

Решение задач, Аудит

Срок сдачи к 5 окт.

11 минут назад

Написать курсовую работу на тему «Анализ прибыли от продаж в организации»

Курсовая, Экономический анализ

Срок сдачи к 20 окт.

11 минут назад

Тема: Российская налоговая система и ее проблемы

Курсовая, Экономика государственной и муниципальной службы

Срок сдачи к 21 окт.

11 минут назад

Выполнить задание в Cisco Packet Tracer в 11

Контрольная, Сети и систесы передачи информации

Срок сдачи к 5 окт.

11 минут назад

Web-приложения для кейтеринговой компании

Диплом, Информатика и программирование

Срок сдачи к 20 нояб.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно