Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Уральский федеральный округ 2 Заселение Урала

Тип Реферат
Предмет Исторические личности
Просмотров
441
Размер файла
358 б
Поделиться

Ознакомительный фрагмент работы:

Уральский федеральный округ 2 Заселение Урала

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ

Экономический факультет. Государственное и муниципальное управление.

Курсовая работа

На тему: «Статистическое изучение социально-экономического явления.»

Вариант №7.

Выполнила студентка

заочного отделения

группа 21

Живаева К.М.

Москва, 2008


Оглавление

Введение

Формирование исходной выборки

Статистические распределения рядов признаков-факторов и результирующего признака

Проверка однородности и нормальности

Вывод зависимостей результирующего-признака от факторов-признаков

Группировка

Определение доверительного интервала

Вычисление линейных коэффициентов корреляции, вывод уравнения регрессии

Заключение

Список источников

Введение

Целью данной работы является статистическое исследование взаимосвязей стоимости автомобиля марки «Хонда-Сивик» с факторными признаками: пробегом и временем эксплуатации; а также, на основании исследования выявления первичных факторов, влияющих на стоимость и вывод зависимости целевого параметра(стоимости) от первичного фактора.

Для построения исходной выборки был выбран сайт www.auto.ru.

Формирование исходной выборки

Используя сайт auto.ru проводим выборочное исследование 50 автомобилей марки Хонда-Сивик.

Исследуемые признаки:

Y ‑ цена автомобиля, тыс.руб.;

Х1 ‑ время эксплуатации, лет;

Х2 ‑ пробег, тыс. км.

№ п/пМаркаY Х1Х2
1Civic VII3795121
2Civic VII399474
3Civic VII429488
4Civic VII393395
5Civic VII397360
6Civic VII430354
7Civic VII459346
8Civic VIII4552107
9Civic VIII467247
10Civic VIII468297
11Civic VIII552260
12Civic VIII565241
13Civic VIII570257
14Civic VIII579230
15Civic VIII5972150
16Civic VIII441175
17Civic VIII466130
18Civic VIII500115
19Civic VIII524126
20Civic VIII530122
21Civic VIII539132
22Civic VIII555162
23Civic VIII560114
24Civic VIII575130
25Civic VIII575188
26Civic VIII600118
27Civic VIII600118
28Civic VIII615140
29Civic VIII680114
30Civic VIII510018
31Civic VIII53300
32Civic VIII53300
33Civic VIII54100
34Civic VIII54100
35Civic VIII56100
36Civic VIII570029
37Civic VIII58500
38Civic VIII59000
39Civic VIII60600
40Civic VIII61600
41Civic VIII64000
42Civic VIII64000
43Civic VIII64000
44Civic VIII64300
45Civic VIII650010
46Civic VIII65000
47Civic VIII66100
48Civic VIII66100
49Civic VIII68300
50Civic VIII600013

Статистические распределения рядов признаков-факторов и результирующего признака

Исследуем статистическое распределение признаков Х1 с помощью интервального вариационного ряда:

Интервальный ряд для Х 1
Х 1F 1Ср. цена тыс.руб.
0-121603
1-214554
2-38532
3-44420
4-52414
5-61379

Приведем графическое отображение ряда для Х1 в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую, моду и медиану интервального ряда распределения для X1. Формула для вычисления среднего арифметического:

где – средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где – значение моды;

X0 – нижняя граница модального интервала;

h – величина модального интервала (1 год);

– частота модального интервала;

– частота интервала, предшествующая модальному;

– частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда X1 наибольшее значение частоты равно 21, т.е. это будет интервал 0 лет , тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

n – число единиц в совокупности

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где – значение медианы;

– нижняя граница медианного интервала;

- номер медианы;

- накопленная частота интервала, предшествующая медианному;

- частота медианного интервала.

По накопленной частоте определяем, что медиана будет находиться в интервале от 1 года до 2-х лет , тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где – дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где – дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где – коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где ;

– коэффициент ассиметрии;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Вычислим значения коэффициента эксцесса:

где

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Исследуем статистическое распределение признаков Х2 с помощью интервального вариационного ряда.

Для построения ряда распределения необходимо определить число групп и величину интервала. Для определения числа групп воспользуемся формулой Стерджесса:

гдеm – число групп (всегда целое);

n – число единиц в выборке, в нашем случае n= 50.

Вычислим m:

Величину интервала определим по формуле:

где Хmax – максимальное значение признака;

Хmin - минимальное значение признака;

m – число групп.

На основании полученных данных построим интервальный ряд для Х2:

Интервальный ряд для Х 2
Х 2F 2Ср. цена тыс.руб.
0 - 2125601
21 - 429551
42 - 637490
63 - 842420
84 - 1054466
105 - 1262417
126 - 1501597

Приведем графическое отображение ряда для Х2 в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую, моду и медиану интервального ряда распределения для X2. Формула для вычисления среднего арифметического:

где – средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где – значение моды;

– нижняя граница модального интервала;

h – величина модального интервала (1 год);

- частота модального интервала;

- частота интервала, предшествующая модальному;

- частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда X1 наибольшее значение частоты равно 25, т.е. это будет интервал 0 до 21 тыс. км., тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

n – число единиц в совокупности

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где– значение медианы;

– нижняя граница медианного интервала;

- номер медианы;

- накопленная частота интервала, предшествующая медианному;

- частота медианного интервала.

По накопленной частоте определяем, что медиана будет находиться в интервале от 21 до 42 тыс. км., тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где – дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где – дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где – коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где

– коэффициент ассиметрии

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Вычислим значения коэффициента эксцесса:

где;

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Исследуем статистическое распределение признаков Y с помощью интервального вариационного ряда.

Величину интервала определим по формуле, используя полученное ранее значение m:

где Хmax – максимальное значение признака;

Хmin - минимальное значение признака;

m – число групп.

На основании полученных данных построим интервальный ряд для Y:

Интервальный ряд для Y
YFyСр. цена тыс.руб.
379 - 4224400,5
422 - 4655443,5
465 - 5084486,5
508 - 5518529,5
551 - 59412572,5
594 - 6377615,5
637 - 68310660

Приведем графическое отображение ряда для Y в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую , моду и медиану интервального ряда распределения для Y. Формула для вычисления среднего арифметического:

где – средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где – значение моды;

Y0 – нижняя граница модального интервала;

h– величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующая модальному;

- частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда Y наибольшее значение частоты равно 12, т.е. это будет интервал 551-594, тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где ;

n – число единиц в совокупности;

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где – значение медианы;

– нижняя граница медианного интервала;

– номер медианы;

– накопленная частота интервала, предшествующего медианному;

- частота медианного интервала;

По накопленной частоте определяем, что медиана будет находиться в интервале 551-594 , тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где – дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где – дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где – коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где

– коэффициент ассиметрии;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Подставив значения, получим, что:

Вычислим значения коэффициента эксцесса:

где ;

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Проверка однородности и нормальности

Проверим интервальные распределения на однородность:

следовательно, совокупность для Х1 является неоднородной.

следовательно, совокупность для Х2 является неоднородной.

следовательно, совокупность для Y является однородной.

Исследуем нормальность распределения факторного признака Х1:

Интервалы значений признака-фактораЧисло единиц, входящих в интервалУдельный вес единиц, входящих в интервал, в общем их числе, %Удельный вес единиц, входящих в интервал, при нормальном распределении, %
1234

(1,6-1,25)-(1,6+1,25)

0,35 – 2,85

22 4468,3

(1,6-2×1,25) - (1,6+2×1,25)

-0,9 – 4,1

499895,4

(1,6-3×1,25) - (1,6+3×1,25)

-2,15 – 5,35

5010099,7

Таким образом, сопоставляя гр.3 и гр.4 делаем вывод: распределение Х1 относительно близко к нормальному, но не подчиняется ему.

Исследуем нормальность распределения факторного признака Х2:

Интервалы значений признака-фактораЧисло единиц, входящих в интервалУдельный вес единиц, входящих в интервал, в общем их числе, %Удельный вес единиц, входящих в интервал, при нормальном распределении, %
1234

(36,15-34,03)-(36,15+34,03)

2,12 – 70,18

244868,3

(36,15-2×34,03) - (36,15+2×34,03)

-31,91 – 104,21

479495,4

(36,15-3×34,03) - (36,15+3×34,03)

-65,94 – 138,24

499899,7

Таким образом, сопоставляя гр.3 и гр.4 делаем вывод: распределение Х2 близко к нормальному, но не подчиняется ему.

Таким образом, проведя анализ на нормальность распределения мы можем отобрать данные не попадающие в диапазон 3х σ. Для ряда Х1 таких значений нет. Для ряда Х2 исключаем значение с пробегом 150 тыс. км.

С учетом отфильтрованных по правилу 3х сигм составим интервальные ряды для Х1, Х2, Y.

Вывод зависимостей результирующего-признака от факторов-признаков

Интервальный ряд для Х 1
Х 1F 1Ср. цена тыс.руб.
0-121603
1-214554
2-37522
3-44420
4-52414
5-61379
Интервальный ряд для Х 2
Х 2F 2Ср. цена тыс.руб.
0 - 2125601
21 - 429551
42 - 637490
63 - 842420
84 - 1054466
105 - 1262417
Интервальный ряд для Y
YF yСр. цена тыс.руб.
379 - 4224400,5
422 - 4655443,5
465 - 5084486,5
508 - 5518529,5
551 - 59412572,5
594 - 6376615,5
637 - 68310660

Проведем аналитические группировки продаваемых автомобилей по времени эксплуатации и пробегу и определим групповые средние.

Построим график Y(X1)

Зависимость цены от времени эксплуатации существует и носит линейный характер, чем больше время эксплуатации, тем дешевле автомобиль.

Построим график Y(X2)

Зависимость цены от пробега существует и носит линейный характер, чем больше пробег автомобиля, тем дешевле автомобиль.

Группировка

На основанииданных статистического наблюдения выделим три типа автомобилей:

· по времени эксплуатации:

o новые автомобили от 0 до 1 года – 34 шт.

o средние автомобили от 2 до 3 лет – 13 шт.

o старые автомобили от 3 до 5 лет – 3 шт.

· по пробегу:

o новые автомобили от 0 до 50 тыс. км. – 36 шт.

o средние автомобили от 50 до 100 тыс.км. – 11 шт.

o старые автомобили от 100 до 150 тыс.км. – 3 шт.

· по цене:

o новые автомобили от 581 до 683 тыс. руб. – 19 шт.

o средние автомобили от 480 до 581 тыс. руб. – 12 шт.

o старые автомобили от 379 до 480 тыс. руб. – 12 шт.

Определение доверительного интервала

Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,9.

При вероятности 0,9 t = 1,64

Следовательно:

Таким образом, с вероятностью 0,9 можно утверждать, что средняя цена автомобиля равна:

Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,95.

При вероятности 0,95 t = 1,96

Следовательно:

Таким образом, с вероятностью 0,95 можно утверждать, что средняя цена автомобиля равна:

Определим необходимую численность выборки при определении средней цены продаваемых автомобилей, чтобы с вероятностью 0,95 предельная ошибка выборки не превышала 10 тыс.руб.

Вычисление линейных коэффициентов корреляции, вывод уравнения регрессии

На основании выборочного наблюдения оценим степень тесноты связи и проведем оценку ее существенности:

Для определения степени тесноты парной линей зависимости используем линейный коэффициент корреляции(r) :

Для вычисления линейных коэффициентов корреляции составим вспомогательную таблицу:

51213791,636,15509,83,484,85-130,8-444,72-11098,4288,49
4743991,636,15509,82,437,85-110,8-265,92-4193,7890,84
4884291,636,15509,82,451,85-80,8-193,92-4189,48124,44
3953931,636,15509,81,458,85-116,8-163,52-6873,6882,39
3603971,636,15509,81,423,85-112,8-157,92-2690,2833,39
3544301,636,15509,81,417,85-79,8-111,72-1424,4324,99
3464591,636,15509,81,49,85-50,8-71,12-500,3813,79
21074551,636,15509,80,470,85-54,8-21,92-3882,5828,34
2474671,636,15509,80,410,85-42,8-17,12-464,384,34
2974681,636,15509,80,460,85-41,8-16,72-2543,5324,34
2605521,636,15509,80,423,8542,216,881006,479,54
2415651,636,15509,80,44,8555,222,08267,721,94
2575701,636,15509,80,420,8560,224,081255,178,34
2305791,636,15509,80,4-6,1569,227,68-425,58-2,46
21505971,636,15509,80,4113,8587,234,889927,7245,54
1754411,636,15509,8-0,638,85-68,841,28-2672,88-23,31
1304661,636,15509,8-0,6-6,15-43,826,28269,373,69
1155001,636,15509,8-0,6-21,15-9,85,88207,2712,69
1265241,636,15509,8-0,6-10,1514,2-8,52-144,136,09
1225301,636,15509,8-0,6-14,1520,2-12,12-285,838,49
1325391,636,15509,8-0,6-4,1529,2-17,52-121,182,49
1625551,636,15509,8-0,625,8545,2-27,121168,42-15,51
1145601,636,15509,8-0,6-22,1550,2-30,12-1111,9313,29
1305751,636,15509,8-0,6-6,1565,2-39,12-400,983,69
1885751,636,15509,8-0,651,8565,2-39,123380,62-31,11
1186001,636,15509,8-0,6-18,1590,2-54,12-1637,1310,89
1186001,636,15509,8-0,6-18,1590,2-54,12-1637,1310,89
1406151,636,15509,8-0,63,85105,2-63,12405,02-2,31
1146801,636,15509,8-0,6-22,15170,2-102,12-3769,9313,29
0185101,636,15509,8-1,6-18,150,2-0,32-3,6329,04
005331,636,15509,8-1,6-36,1523,2-37,12-838,6857,84
005331,636,15509,8-1,6-36,1523,2-37,12-838,6857,84
005411,636,15509,8-1,6-36,1531,2-49,92-1127,8857,84
005411,636,15509,8-1,6-36,1531,2-49,92-1127,8857,84
005611,636,15509,8-1,6-36,1551,2-81,92-1850,8857,84
0295701,636,15509,8-1,6-7,1560,2-96,32-430,4311,44
005851,636,15509,8-1,6-36,1575,2-120,32-2718,4857,84
005901,636,15509,8-1,6-36,1580,2-128,32-2899,2357,84
006061,636,15509,8-1,6-36,1596,2-153,92-3477,6357,84
006161,636,15509,8-1,6-36,15106,2-169,92-3839,1357,84
006401,636,15509,8-1,6-36,15130,2-208,32-4706,7357,84
006401,636,15509,8-1,6-36,15130,2-208,32-4706,7357,84
006401,636,15509,8-1,6-36,15130,2-208,32-4706,7357,84
006431,636,15509,8-1,6-36,15133,2-213,12-4815,1857,84
0106501,636,15509,8-1,6-26,15140,2-224,32-3666,2341,84
006501,636,15509,8-1,6-36,15140,2-224,32-5068,2357,84
006611,636,15509,8-1,6-36,15151,2-241,92-5465,8857,84
006611,636,15509,8-1,6-36,15151,2-241,92-5465,8857,84
006831,636,15509,8-1,6-36,15173,2-277,12-6261,1857,84
0136001,636,15509,8-1,6-23,1590,2-144,32-2088,1337,04
Итого:-4829,8-98283,31894,15

Тогда

Таким образом, значение линейного коэффициента корреляции = -0,84 свидетельствует о наличии обратной и тесной связи между временем эксплуатации и ценой автомобиля.

Таким образом, значение линейного коэффициента корреляции = -0,63 свидетельствует о наличии обратной и тесной связи между пробегом и ценой автомобиля.

Таким образом, значение линейного коэффициента корреляции = 0,89 свидетельствует о наличии прямой и тесной связи временем эксплуатации и пробегом автомобиля.

Проведем анализ матрицы парных коэффициентов корреляции:

Составим матрицу парных коэффициентов корреляции:

YX1X2
Y1-0,84-0,63
X1-0,8410,89
X2-0,630,891

Так как оба условия не соблюдаются, то для составления уравнения регрессии будем использовать наиболее значимый (весомый) факторный признак, т.е. – X1 (время эксплуатации), т.к. .

Составим уравнение регрессии:

В качестве регрессионной модели выберем линейную модель, которая имеет вид:

Вычислим коэффициенты регрессионного уравнения:

Таким образом, уравнение регрессии примет вид:


Заключение

В ходе исследования были выявлены следующие характеристики взаимосвязи стоимости автомобиля с факторными признаками:

· Стоимость автомобиля линейно зависит от пробега и времени эксплуатации причем эта зависимость обратная для обоих случаев. При увеличении пробега (времени эксплуатации) стоимость автомобиля уменьшается;

· Основным фактором, влияющим на конечную стоимость, является время эксплуатации;

· Выявлена зависимость стоимости автомобиля от времени эксплуатации, которая имеет следующий вид:


Список источников

1) Сайт www.auto.ru.

2) Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики: Учеб. пособие. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – 336 с: ил. ISBN 5-279-02555-0.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно