Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Реализация метода главных компонент с помощью библиотеки OpenCV

Тип Реферат
Предмет Информатика
Просмотров
1021
Размер файла
23 б
Поделиться

Ознакомительный фрагмент работы:

Реализация метода главных компонент с помощью библиотеки OpenCV

Министерство образования и науки Российской Федерации

Южно-Уральский государственный университет

Кафедра Автоматика и Управление

Курсовая работа

на тему

Реализация метода главных компонент с помощью библиотеки OpenCV

Выполнил: Пушников А.А.

Группа: ПС-669

Проверил Разнополов К.О.

Дата «____» _____________2006 г.

Челябинск

2006 г
Оглавление

Метод главных компонент2

Реализация метода главных компонент в OpenCV_ 3

Текст программы_ 4


Метод главных компонент

Метод главных компонент (Principal Component Analysis, PCA) применяется для сжатия информации без существенных потерь информативности. Он состоит в линейном ортогональном преобразовании входного вектора X размерности N в выходной вектор Y размерности M, N. При этом компоненты вектора Y являются некоррелированными и общая дисперсия после преобразования остаётся неизменной. Матрица X состоит из всех примеров изображений обучающего набора. Решив уравнение , получаем матрицу собственных векторов , где – ковариационная матрица для X, а – диагональная матрица собственных чисел. Выбрав из подматрицу , соответствующую M наибольшим собственным числам, получим, что преобразование , где – нормализованный вектор с нулевым математическим ожиданием, характеризует большую часть общей дисперсии и отражает наиболее существенные изменения X.

Выбор первых M главных компонент разбивает векторное пространство на главное (собственное) пространство , содержащее главные компоненты, и его ортогональное дополнение .

Применение для задачи распознавания изображений имеет следующий вид. Входные вектора представляют собой отцентрированные и приведённые к единому масштабу изображения. Собственные вектора, вычисленные для всего набора изображений, называются собственными объектами (eigenobject). С помощью вычисленных ранее матриц входное изображение разлагается на набор линейных коэффициентов, называемых главными компонентами. Сумма главных компонент, умноженных на соответствующие собственные вектора, является реконструкцией изображения.

Для каждого изображения лица вычисляются его главные компоненты. Обычно берётся от 5 до 200 главных компонент. Остальные компоненты кодируют мелкие различия между эталоном и шум. Процесс распознавания заключается в сравнении главных компонент неизвестного изображения с компонентами всех остальных изображений. Для этого обычно применяют какую-либо метрику (простейший случай – Евклидово расстояние). При этом предполагается, что изображения, соответствующие одному эталону, сгруппированы в кластеры в собственном пространстве. Из базы данных (или тренировочного набора) выбираются изображения-кандидаты, имеющие наименьшее расстояние от входного (неизвестного) изображения.

Дальнейшее совершенствование заключалось в использовании метрики Махаланобиса и Гауссовского распределения для оценки близости изображений. Для учёта различных ракурсов в этой же работе использовалось многомодальное распределение изображений в собственном пространстве.

Основное преимущество применения анализа главных компонент – это хранение и поиск изображений в больших базах данных, реконструкция изображений.

Основной недостаток – высокие требования к условиям съёмки изображений. Изображения должны быть получены в близких условиях освещённости, одинаковом ракурсе. Должна быть проведена качественная предварительная обработка, приводящая изображения к стандартным условиям (масштаб, поворот, центрирование, выравнивание яркости, отсечение фона).


Реализация метода главных компонент в OpenCV

Библиотека OpenCV реализует описанный выше алгоритм следующими функциями:

Функция, вычисляет собственные объекты эталонов:

void cvCalcEigenObjects( int nObjects, void* input, void* output, int ioFlags, int ioBufSize, void* userData, CvTermCriteria* calcLimit, IplImage* avg, float* eigVals ),

где

nObjects – число эталонов

input - указатель на массив изображений-эталонов (изображения глубиной 8 бит)

output – (выход функции) указатель на массив собственных объектов (изображения глубиной 32 бит)

ioFlags – флаги ввода/вывода. Для работы с памятью.

ioBufSize - размер буфера. Для работы с памятью.

userData – указатель на структуру для работы с памятью.

calcLimit – критерий прекращения вычислений. Два варианта: по количеству итераций и по ко точности (?)

avg – (выход функции) усредненное изображение эталонов

eigVals (выход функции) указатель на собственные числа (может быть NULL)

Функция, вычисляет коэффициенты разложения:

voidcvEigenDecomposite( IplImage* obj, inteigenvec_count, void* eigInput, intioFlags, void* userData, IplImage* avg, float* coeffs ),

где

obj – исследуемое изображение

eigenvec_count – число собственных объектов

eigInput - указатель на массив собственных объектов (изображения глубиной 32 бит)

ioFlags – флаги ввода/вывода. Для работы с памятью.

userData – указатель на структуру для работы с памятью.

avg - (выход функции) усредненное изображение эталонов

coeffs - (выход функции) коэффициенты разложения (?)

Функция, вычисляет проекцию исследуемого изображения на пространство собственных объектов:

void cvEigenProjection( void* input_vecs, int eigenvec_count, int io_flags, void* userdata, float* coeffs, IplImage* avg, IplImage* proj ),

где

input_vec - указатель на массив собственных объектов (изображения глубиной 32 бит)

eigenvec_count – число собственных объектов

io_flags – флаги ввода/вывода. Для работы с памятью.

userdata – указатель на структуру для работы с памятью.

coeffs - коэффициенты разложения (?)

avg - усредненное изображение эталонов

proj - проекция исследуемого изображения на пространство собственных объектов

В полученной проекции имеет смысл убрать излишние компоненты (например, с помощью функции cvThreshold – отсечение по порогу). Далее полученный результат можно сравнивать с эталонами, для принятия решения. Способов сравнения много, это может быть, например, минимальное расстояние (Евклидово) или корреляция с эталонами.


Текст программы

//---------------------------------------------------------------------------

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

#include "cxcore.h"

#include "cv.h"

//---------------------------------------------------------------------------

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

IplImage **Objs, *Pro, *Object;

int obj_number=3;

HINSTANCE highgui,cv,cvaux;

IplImage* (__stdcall *cvLoadImage)( const char* filename, int iscolor);

int (__stdcall *cvSaveImage)( const char* filename, const CvArr* image);

int (__stdcall *cvNamedWindow)( const char* name, int flags );

void (__stdcall *cvShowImage)( const char* name, const CvArr* image );

IplImage* (__stdcall *cvCreateImage_)( CvSize size, int depth, int channels );

double (__stdcall *cvDotProduct_)(const CvArr* src1, const CvArr* src2 );

void (__stdcall *cvMul_)(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1 );

void (__stdcall *cvThreshold_)(const CvArr* src, CvArr* dst, double threshold,double max_value, int threshold_type);

//---------------------------------------------------------------------------

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

}

//---------------------------------------------------------------------------

void show_im(TCanvas*c,IplImage *p)

{

for(int i=0;i<p->width;i++)

for(int j=0;j<p->height;j++)

{

int a=p->imageDataOrigin[p->widthStep*j+i];

c->Pixels[i][j]=a&0x0000ff|(a<<8)&0x00ff00|(a<<16)&0xff0000;

}

}

void pca(int obj_number, IplImage **Objs,CvTermCriteria limit, IplImage *Object,IplImage *Pro)

{

CvSize size;

int m1=obj_number;

IplImage **EigObjs, *Avg;

float *coeffs;

HINSTANCE hDLL = LoadLibrary("cvaux100.dll");

if (!hDLL) return;

void (__stdcall *cvCalcEigenObjects)( int nObjects, void* input, void* output, int ioFlags, int ioBufSize, void* userData, CvTermCriteria* calcLimit, IplImage* avg, float* eigVals );

cvCalcEigenObjects = (void(__stdcall *)( int nObjects, void* input, void* output, int ioFlags, int ioBufSize, void* userData, CvTermCriteria* calcLimit, IplImage* avg, float* eigVals ))GetProcAddress(hDLL, "cvCalcEigenObjects");

if (!cvCalcEigenObjects) return;

void (__stdcall *cvEigenDecomposite)( IplImage* obj, int nEigObjs, void* eigInput, int ioFlags, void* userData, IplImage* avg, float* coeffs );

cvEigenDecomposite = (void(__stdcall *)( IplImage* obj, int nEigObjs, void* eigInput, int ioFlags, void* userData, IplImage* avg, float* coeffs ))GetProcAddress(hDLL, "cvEigenDecomposite");

if (!cvEigenDecomposite) return;

void (__stdcall *cvEigenProjection)( void* eigInput, int nEigObjs, int ioFlags, void* userData, float* coeffs, IplImage* avg, IplImage* proj );

cvEigenProjection = (void(__stdcall *)( void* eigInput, int nEigObjs, int ioFlags, void* userData, float* coeffs, IplImage* avg, IplImage* proj ))GetProcAddress(hDLL, "cvEigenProjection");

if (!cvEigenProjection) return;

EigObjs=new IplImage*[m1];

coeffs=new float[m1];

size.width = Object->width; size.height = Object->height;

Avg = cvCreateImage_( size, IPL_DEPTH_32F, 1 );

for(int i=0; i<m1; i++ )

{

EigObjs[i] = cvCreateImage_( size, IPL_DEPTH_32F, 1 );

}

cvCalcEigenObjects( obj_number, (void*)Objs, (void*)EigObjs, 0, 0, NULL, &limit, Avg, NULL );

cvEigenDecomposite( Object, m1, (void*)EigObjs, 0, NULL, Avg, coeffs );

cvEigenProjection ( (void*)EigObjs, m1, 0, NULL, coeffs, Avg, Pro );

FreeLibrary(hDLL);

// cvReleaseImage( &Avg );

// for(int i=0; i<m1; i++ )

// {

// cvReleaseImage( &EigObjs[i] );

// }

// cvFree( &coeffs);

}

void __fastcall TForm1::FormCreate(TObject *Sender)

{

highgui = LoadLibrary("highgui100.dll");

if (!highgui) return;

cvLoadImage = (IplImage*(__stdcall *)( const char* filename, int iscolor))GetProcAddress(highgui, "cvLoadImage");

if (!cvLoadImage) return;

cvSaveImage = (int(__stdcall *)( const char* filename, const CvArr* image))GetProcAddress(highgui, "cvSaveImage");

if (!cvSaveImage) return;

cvNamedWindow = (int(__stdcall *)( const char* name, int flags ))GetProcAddress(highgui, "cvNamedWindow");

if (!cvNamedWindow) return;

cvShowImage = (void(__stdcall *)( const char* name, const CvArr* image ))GetProcAddress(highgui, "cvShowImage");

if (!cvShowImage) return;

cv = LoadLibrary("cxcore100.dll");

if (!cv) return;

cvCreateImage_ = (IplImage*(__stdcall *)( CvSize size, int depth, int channels ))GetProcAddress(cv, "cvCreateImage");

if (!cvCreateImage_) return;

cvDotProduct_ = (double(__stdcall *)( const CvArr* src1, const CvArr* src2))GetProcAddress(cv, "cvDotProduct");

if (!cvDotProduct_) return;

cvMul_ = (void(__stdcall *)( const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1))GetProcAddress(cv, "cvMul");

if (!cvMul_) return;

cvaux = LoadLibrary("cv100.dll");

if (!cvaux) return;

cvThreshold_ = (void(__stdcall *)(const CvArr* src, CvArr* dst, double threshold,double max_value, int threshold_type))GetProcAddress(cvaux, "cvThreshold");

if (!cvThreshold_) return;

Objs=new IplImage*[obj_number];

Objs[0] = cvLoadImage( ".\et\1.bmp", 0);

show_im(Image1->Canvas,Objs[0]);

Objs[1] = cvLoadImage( ".\et\2.bmp", 0);

show_im(Image2->Canvas,Objs[1]);

Objs[2] = cvLoadImage( ".\et\3.bmp", 0);

show_im(Image3->Canvas,Objs[2]);

String fname="6.bmp";

Object = cvLoadImage((".\in\"+fname).c_str(), 0);

show_im(Image4->Canvas,Object);

}

//---------------------------------------------------------------------------

void __fastcall TForm1::Button1Click(TObject *Sender)

{

float e[3];

CvTermCriteria limit;

CvSize size;

size.width = Object->width; size.height = Object->height;

Pro = cvCreateImage_( size, IPL_DEPTH_8U, 1 );

limit.type = CV_TERMCRIT_EPS;

limit.max_iter = 1;

limit.epsilon = 0.1;

show_im(Image4->Canvas,Object);

pca(obj_number,Objs,limit,Object,Pro);

show_im(Image5->Canvas,Pro);

cvThreshold_(Pro,Object,200,255,CV_THRESH_BINARY);

show_im(Image6->Canvas,Object);

cvMul_(Object,Objs[0],Pro);

show_im(Image7->Canvas,Pro);

cvMul_(Object,Objs[1],Pro);

show_im(Image8->Canvas,Pro);

cvMul_(Object,Objs[2],Pro);

show_im(Image9->Canvas,Pro);

e[0]=cvDotProduct_(Object,Objs[0])/cvDotProduct_(Objs[0],Objs[0]);

e[1]=cvDotProduct_(Object,Objs[1])/cvDotProduct_(Objs[1],Objs[1]);

e[2]=cvDotProduct_(Object,Objs[2])/cvDotProduct_(Objs[2],Objs[2]);

Label1->Caption=FloatToStr(int(e[0]*1000)/1000.);

Label2->Caption=FloatToStr(int(e[1]*1000)/1000.);

Label3->Caption=FloatToStr(int(e[2]*1000)/1000.);

if(e[0]>e[1])

if(e[0]>e[2])

ShowMessage("1");

if(e[1]>e[0])

if(e[1]>e[2])

ShowMessage("2");

if(e[2]>e[1])

if(e[2]>e[0])

ShowMessage("3");

}

//---------------------------------------------------------------------------

void __fastcall TForm1::Image1Click(TObject *Sender)

{

if(OpenPictureDialog1->Execute())

{

Objs[0] = cvLoadImage(OpenPictureDialog1->FileName.c_str(), 0);

show_im(Image1->Canvas,Objs[0]);

}

}

//---------------------------------------------------------------------------

void __fastcall TForm1::Image2Click(TObject *Sender)

{

if(OpenPictureDialog1->Execute())

{

Objs[1] = cvLoadImage(OpenPictureDialog1->FileName.c_str(), 0);

show_im(Image2->Canvas,Objs[1]);

}

}

//---------------------------------------------------------------------------

void __fastcall TForm1::Image3Click(TObject *Sender)

{

if(OpenPictureDialog1->Execute())

{

Objs[2] = cvLoadImage(OpenPictureDialog1->FileName.c_str(), 0);

show_im(Image3->Canvas,Objs[2]);

}

}

//---------------------------------------------------------------------------

void __fastcall TForm1::Image4Click(TObject *Sender)

{

if(OpenPictureDialog1->Execute())

{

Object = cvLoadImage(OpenPictureDialog1->FileName.c_str(), 0);

show_im(Image4->Canvas,Object);

}

}

//---------------------------------------------------------------------------


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно