Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Реализация искусственной нейронной сети

Тип Реферат
Предмет Информатика и программирование
Просмотров
1595
Размер файла
138 б
Поделиться

Ознакомительный фрагмент работы:

Реализация искусственной нейронной сети

Программная реализация искусственной нейронной сети для разделения хроматографических пиков.

1 Необходимость

Одной из актуальных проблем в хроматографии является выделение пиков из их суперпозиции для более точного расчёта площади каждого из них.

Существует множество статистических методов решения этой задачи (метод наименьших квадратов, метод главных компонент и т. д.). Но в настоящее время наиболее интересен подход с использованием в этой области искусственных нейронных сетей (ИНС).

Искусственные нейронные сети перестают быть экзотикой. В последние годы разработки в этой области представляют большой интерес не только для учёного света, но и для практичных людей. Областей их применения множество. Это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения.

При решении задачи выделения хроматографических пиков из их суперпозиции искусственные нейронные сети дают более точные результаты, чем методы статистики. Выделение производится путём прогнозирования фронта пика, скрытого из-за суперпозиции с соседним, на основании открытой части пика.

Целью данной работы является программная реализация искусственной нейросети, которая обеспечит разделение пиков на хроматограмме.

2 Теоретическое обоснование

Поскольку искусственные нейронные сети позволяют аппроксимировать функции, прогнозировать – их можно прекрасно использовать для решения настоящей проблемы: разделение хроматографических пиков (см. приложение А).

Хроматографические пики могут быть как симметричными так и не симметричными и являются искажёнными Гауссовыми функционалами. И если пик описывается некоторой функцией от времени f(t), то на хроматограф поступает суперпозиция пиков, поэтому функция от времени отображаемая на его экране есть как сумма функций всех пиков:

Поэтому образы пиков, которые присутствуют на хроматограмме, могут быть сильно искажены, из-за наложений, а в некоторых случаях скрыты другими.

Открытые части не сильно искажённых пиков позволяют спрогнозировать скрытую, и посчитать площадь под пиком.

Метод прогнозирования заключается в следующем:

1.)На входы нейронной сети поступают отчёты, причём желательно нормированные:

-среднее значение выборки временных значений примеров-входов,

-их исправленная дисперсия.

2.)На выходы нейронной сети подаются соответствующие значения функции описывающей пик. Их необходимо преобразовать, чтобы они не превосходили 1, для чего нужно делить на максимум выборки.

3.)После обучения сети до не обходимого уровня ошибки необходимо подать на вход значение времени, при котором требуется узнать значение функции. Полученное значение при прямом функционировании и есть прогнозируемая точка. Она же будет добавлена в обучающую выборку. И снова провести выше описанные действия. Прогнозирование производится до тех пор, пока это необходимо.

Целесообразно параллельно проводить прогнозирование смежного пика. Прогнозируемая точка смежного фронта соседнего пика может быть получена следующим способом:

1.) Подать параллельной сети примеры соседнего пика.

2.) Подать на дополнительный вход разность между значением суперпозиции в этой точке и полученным значением в этой точке у соседнего пика.

4 Методика обучения нейросети

Метод обучения нейросети на основании алгоритма обратного распространения представляет собой - распространение сигналов ошибки от выходов нейросети к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы.

Ниже представлен методика обучения НС с помощью процедуры обратного распространения строится так:

1. Подать на входы сети один из возможных образов и в режиме обычного функционирования НС, когда сигналы распространяются от входов к выходам, рассчитать значения последних. Ниже представлена формула расчёта взвешенной суммы весов:

(1)

где M – число нейронов в слое n-1 с учетом нейрона с постоянным выходным состоянием +1, задающего смещение; yi(n-1)=xij(n) – i-ый вход нейрона j слоя n.

yj(n) = f(sj(n)), где – сигмоид (2)

yq(0)=Iq,

где Iq – q-ая компонента вектора входного образа.

2. Рассчитать d(N) для выходного слоя по формуле:

(3)

Рассчитать изменения весов Dw( N) слоя N по формуле:

(4)

3. Рассчитать для всех остальных слоев, n=N-1,...1

1)d( n) по формуле:

(5)

2) Dw( n)по формуле(15)

4. Скорректировать все веса в НС

(6)

5. Если ошибка сети существенна, перейти на шаг 1. В противном случае конец.

6 Заключение

В ходе настоящей работы была разработана и реализована программно искусственная нейронная сеть. Программа написана в среде Borland Delphi 3. Она представляет собой гибкую систему, в которой задаётся количество скрытых слоёв и количество нейронов в каждом из них. Количество входов и выходов одинаково и равно единице. Над программой был проведён длительный эксперимент, который продолжался около 10-ти часов. За это время нейронная сеть, реализованная в ней, обучалась по переднему фронту пика(см. приложение Г). Нейронная сеть состояла из 4-х слоёв по 50 нейронов, и выходного слоя с одним нейроном. Сеть обучилась до уровня ошибки – 0,0016, за число итераций – 95649.

Приложение А

Пример суперпозиции пиков и их истинностных фронтов

Приложение Г

Результаты обучения

Рис. 1. Результат работы программы

Рис. 2. График зависимости ошибки обученияот номера итерации


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 395 оценок star star star star star
среднее 4.9 из 5
ЮУрГУ
Анна очень добросовестный исполнитель, я буду обращаться к ней еще. Задание выполнено намн...
star star star star star
ОГИС
Работа выполнена быстро и качественно! По написанию-доступна к восприятию! Легко читается!...
star star star star star
ИРНИТУ
Работа выполнена досрочно, исполнитель всегда на связи, можно обсудить интересующие вопрос...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

построить логическую схему F(a, b) под цифрой...

Решение задач, Информатика

Срок сдачи к 15 янв.

2 минуты назад
4 минуты назад

Проектирование различных форм взаимодействия органов местного самоуправления со СМИ

Магистерская диссертация, Государственное и муниципальное управление

Срок сдачи к 31 мар.

11 минут назад

Сделать презентацию + доклад

Презентация, основы теории английского языка

Срок сдачи к 15 янв.

11 минут назад

Оценка эффективности использования оборотного капитала предприятия

Курсовая, Анализ финансово-хозяйственной деятельности (афхд)

Срок сдачи к 29 янв.

11 минут назад

Контрольная работа

Решение задач, БЖД

Срок сдачи к 18 янв.

11 минут назад

Курсовая по предмету «Экономика»

Курсовая, Экономика

Срок сдачи к 27 янв.

11 минут назад

Выпускная квалификационная работа

Диплом, Машиностроение

Срок сдачи к 31 янв.

11 минут назад

выделить цифры на картинках ярким цветом

Другое, Медицина

Срок сдачи к 15 янв.

11 минут назад

Сделать курсовую работу и 3 лабораторных работы

Курсовая, Математические основы управления и методы инженерных задач

Срок сдачи к 18 янв.

11 минут назад

Размер пенсии по старости, 30-40стр

Курсовая, Право социального обеспечения

Срок сдачи к 13 февр.

11 минут назад

Решить несложное задание

Решение задач, основы технологии машиностроения

Срок сдачи к 15 янв.

11 минут назад

Практическая работа 4, вариант 24. Задание расписано в прикрепленных...

Лабораторная, Теоретические основы электротехники

Срок сдачи к 15 янв.

11 минут назад

построить логическую схему функции F(a, b)

Онлайн-помощь, Информатика

Срок сдачи к 15 янв.

11 минут назад

Решить примеры (9 шт) в Multisim

Лабораторная, Электротехника и электроника

Срок сдачи к 21 янв.

11 минут назад

2 контрольные

Контрольная, Планирование и прогнозирование

Срок сдачи к 16 янв.

11 минут назад

Решить задачи

Решение задач, Начертательная геометрия

Срок сдачи к 15 янв.

11 минут назад

Экономика труда курсовая работа № варианта 4

Курсовая, Экономика предприятия

Срок сдачи к 18 янв.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно