Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Численное решение системы линейных алгебраических уравнений методом Гаусса

Тип Реферат
Предмет Информатика и программирование
Просмотров
497
Размер файла
222 б
Поделиться

Ознакомительный фрагмент работы:

Численное решение системы линейных алгебраических уравнений методом Гаусса

Содержание

Введение

1. Постановка задачи

2. Математические и алгоритмические основы решения задачи

2.1 Описание метода

2.2 Алгоритм

3. Функциональные модели и блок-схемы решения задачи

4. Программная реализация решения задачи

5. Пример выполнения программы

Заключение

Список использованных источникови литературы

Введение

Математические модели процессов часто или сразу строятся как линейные алгебраические системы или сводятся к ним. Необходимость решения СЛАУ возникает при вычислении определителя, обращения матриц, нахождении собственных чисел.

Методы численного решения системы Ax=b, где A - матрица n x n, det A ≠ 0, x - искомый вектор, b - заданный вектор, разделяются на два класса: прямые и итерационные. Прямые методы позволяют находить решение системы за конечное число арифметических операций. Если операции реализуются точно, то решение будет точным (прямые методы еще называют точными). На деле при вычислении на ЭВМ прямые методы не приводят к точному решению вследствие погрешностей округления.

Итерационные методы позволяют найти точное решение путем бесконечного повторения единообразных действий т.е. решение, которое реально можно получить, будет приближенным.

1. Постановка задачи

Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида

a11x1 + a12x2 + … + a1nxn = b1,a21x2 + a22x2 + … + a2nxn = b2,... ... ...

an1x1 + an2x2 + … + annxn = bn

с помощью метода исключения Гаусса.

Пример 1. Покажем, как методом Гаусса можно решить следующую систему:

Обнулим коэффициенты при x во второй и третьей строчках. Для этого домножим их на и 1 соответственно и сложим с первой строкой:

Теперь обнулим коэффициент при y в третьей строке, домножив вторую строку на - 6 и сложив с третьей:

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке.

Имеем:

z = - 1 из третьего;

y = 3 из второго, подставив полученное z

x = 2 из первого, подставив полученные z и y.

Таким образом исходная система решена.

Пример 2. Покажем, как методом Гаусса можно решить следующую систему:

Составим расширенную матрицу системы.

.

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: x =1, y = 2, z = 3.

2. Математические и алгоритмические основы решения задачи

2.1 Описание метода

Метод Гаусса - классический метод решения системы линейных алгебраических уравнений (СЛАУ). Состоит в постепенном понижении порядка системы и исключении неизвестных.

Пусть исходная система выглядит следующим образом

,

. (1)

Тогда согласно свойству элементарных преобразований над строками эту систему можно привести к трапециальному виду:

,.

Переменные называются главными переменными. Все остальные называются свободными.

Если , то рассматриваемая система несовместна.

Предположим, что .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом , i=1,…,r. (где i - номер строки):

где i=1,…,r, k=i+1, …, n.

Если свободным переменным системы (2) придавать все возможные значения и вычислить через них главные переменные, то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях полученное нами решение является решением системы (1).

Следствия:

Если в совместной системе все переменные главные, то такая система является определённой.

Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной.

Условие совместности:

Упомянутое выше условие может быть сформулировано в качестве необходимого и достаточного условия совместности:

Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).

2.2 Алгоритм

Численное решение систем вида:

(3)

или Ax=b методом Гаусса заключается в последовательном исключении неизвестных. Система (3) поэтапно приводится к треугольному виду. Сначала исключается x1 из 2-го, 3-го,..., n-го уравнений, для этого необходимо сложить уравнения 2,3,...,n с первым уравнением, умноженным на - a21/a11, - a31/a11,..., - an1/a11 соответственно.

(4)

Потом x2 из 3-го,..., n-го умножением второго уравнения на - a¹32/a¹22, - a¹42/a¹22,..., - a¹n2/a¹22 и сложением с 3,4,. n уравнениями.

И дальше по аналогии система приводится к треугольному виду:

.

Процесс приведения системы к треугольному виду называется прямым ходом. Общие формулы для прямого хода:

,

,

где k =1,...,n - 1; i,j = k+1,...,n.

Для нахождения решения теперь необходимо вычислить неизвестные, начиная с n-го уравнения. Процесс вычисления значений неизвестных называется обратным ходом.

На каждом этапе xk находится по формуле

,

где k = n, n-1,...,

3. Функциональные модели и блок-схемы решения задачи

Функциональные модели и блок-схемы решения задачи представлены на рисунках 1 и 2.

Условные обозначения:

I, J- временные переменные;

A- временная матрица;

B- массив свободных членов матрицы;

X- массив решений;

NUMB- временная переменная;

MATRIX- матрица для расчета;

ROW_COL, R_C, LEN- количество строк и столбцов в матрице;

ARRAY_B- рабочий массив свободных членов.

Рисунок 1 - Функциональная модель решения задачи для функции PRINT_RES

Рисунок 2 - Блок-схема решения задачи для функции METHOD_GAUS

4. Программная реализация решения задачи

; ROW_COL - КОЛИЧЕСТВО СТРОК И СТОЛБЦОВ МАТРИЦЫ

(SETQ ROW_COL 0)

(SETQ INPUT (OPEN " D: MATRIX. TXT": DIRECTION: INPUT))

(SETF ROW_COL (READ INPUT))

; MATRIX - МАТРИЦА ДЛЯ ВЫЧИСЛЕНИЯ

(SETQ MATRIX (MAKE-ARRAY (LIST ROW_COL ROW_COL): ELEMENT-TYPE 'INTEGER: INITIAL-ELEMENT 0))

(SETF MATRIX (READ INPUT))

; ПОЛУЧАЕМ СВОБОДНЫЕ ЧЛЕНЫ

(SETQ B (MAKE-ARRAY ROW_COL: ELEMENT-TYPE 'INTEGER: INITIAL-ELEMENT 0))

; ПОЛУЧАЕМ МАТРИЦУ

(SETQ B (READ INPUT))

(CLOSE INPUT)

(DEFUN METHOD_GAUS (MATRIX ARRAY_B R_C)

;ОБЪЯВЛЛЯЕМ ПЕРЕМЕННЫЕ

; ИТЕРАТОРЫ

(DECLARE (SPECIAL I))

(DECLARE (SPECIAL J))

(DECLARE (SPECIAL A))

(DECLARE (SPECIAL B))

(DECLARE (SPECIAL X))

;ВРЕМЕННАЯ ПЕРЕМЕННАЯ

(DECLARE (SPECIAL NUMB))

; A - ВРЕМЕННАЯ МАТРИЦА

(SETQ A (MAKE-ARRAY (LIST R_C R_C): ELEMENT-TYPE 'INTEGER: INITIAL-ELEMENT 0))

(SETF A MATRIX)

; В - МАТРИЦА СВОБОДНЫХ ЧЛЕНОВ

(SETQ B (MAKE-ARRAY R_C: ELEMENT-TYPE 'INTEGER: INITIAL-ELEMENT 0))

(SETF B ARRAY_B)

; X - МАССИВ РЕШЕНИЙ

(SETQ X (MAKE-ARRAY R_C: ELEMENT-TYPE 'INTEGER: INITIAL-ELEMENT 0))

;ВЫПОЛНЯЕМ ПРЕОБРАЗОВАНИЯ СТРОК

(DO

( (P 0))

( (>= P ( - R_C 1)))

(DO

( (I (+ P 1)))

( (>= I R_C))

(SETQ NUMB (/ (AREF A I P) (AREF A P P)))

(DO

( (J P))

( (>= J R_C))

(SETF (AREF A I J) ( - (AREF A I J) (* (AREF A P J) NUMB)))

(SETQ J (+ J 1))

)

(SETF (AREF B 0 I) ( - (AREF B 0 I) (* (AREF B 0 P) NUMB)))

(SETQ I (+ I 1))

)

(SETQ P (+ P 1))

)

(SETF (AREF X ( - R_C 1)) (FLOAT (/ (AREF B 0 ( - R_C 1)) (AREF A ( - R_C 1) ( - R_C 1)))))

;ПОЛУЧИЛИ СТУПЕНЧАТУЮ МАТРИЦУ

; НАХОДИМ X

(DO

( (I ( - R_C 2)))

( (< I 0))

(SETQ NUMB 0)

(DO

( (J (+ I 1)))

( (>= J R_C) X)

(SETQ NUMB (+ NUMB (* (AREF A I J) (AREF X J))))

(SETQ J (+ J 1))

)

(SETF (AREF X I) (FLOAT (/ ( - (AREF B 0 I) NUMB) (AREF A I I))))

(SETQ I ( - I 1))

)

X

)

; ПРИМЕНЯЕМ МЕТОД ГАУССА ДЛЯ ЗАДАННОЙ МАТРИЦЫ

(METHOD_GAUS MATRIX B ROW_COL)

; ФУНКЦИЯ ВЫВОД МАССИВА X

(DEFUN PRINT_RES (MATR_X LEN)

(DO

( (I 0))

( (>= I LEN))

(PRINT (LIST 'X I '= (AREF MATR_X I)) OUTPUT)

(SETQ I (+ I 1))

)

)

; ВЫВОД МАССИВА X В ФАЙЛ

(SETQ OUTPUT (OPEN " D: RESULT. TXT": DIRECTION: OUTPUT))

(PRINT_RES X ROW_COL)

(TERPRI OUTPUT)

(CLOSE OUTPUT)

5. Пример выполнения программы

Пример 1.

Рисунок 3 - Входные данные

Рисунок 4 - Выходные данные

Пример 2.

Рисунок 5 - Входные данные

Рисунок 6 - Выходные данные

Пример 3.

Рисунок 7 - Входные данные

Рисунок 8 - Выходные данные

Заключение

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для нахождения матрицы, обратной к данной, определения ранга матрицы, численного решения СЛАУ в вычислительной технике.

Итогом работы можно считать созданную функциональную модель решения системы линейных алгебраических уравнений методом Гаусса. Данная модель применима к невырожденным матрицам с одинаковым количеством строк и столбцов. Созданная функциональная модель и ее программная реализация могут служить органической частью решения более сложных задач.

Список использованных источникови литературы

1. Васильев Ф.П. Численные методы решения экстремальных задач. [Текст] / Ф.П. Васильев - М.: Наука, 2002. C.415.

2. Калиткин Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. - М.: Питер, 2001. С.504.

3. Кнут Д.Э. Искусство программирования. Основные алгоритмы [Текст] / Д.Э. Кнут. - М.: Вильямс, 2007. Т.1. - 712 с.

4. Метод Гаусса [Электронный ресурс] - Режим доступа: http://www.wikipedia.org/wiki/Метод_Гаусса.

5. Степанов П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А. Степанов, А.В. Бржезовский. - М.: ГУАП, 2003. С.79.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
Мпгу
Быстро, четко, исправлены поправки. Насчет качества работы узнаю после оценки
star star star star star
ГАПОУ МО МонПК
Работа выполнена быстро, и очень хорошо. Очень рекомендую Алину как исполнителя для ваших ...
star star star star star
МИП
Огромное спасибо, Виктория. Все выполнено быстро, качественно, всегда на связи. Уточнения ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную работу по Теоретической механике. М-08023

Контрольная, Теоретическая механика

Срок сдачи к 30 дек.

только что

Практическое задание

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

1 минуту назад

Лабораторная

Лабораторная, технология конструкционных материалов

Срок сдачи к 1 янв.

3 минуты назад

Тестирование по психологии

Тест дистанционно, Психология и педагогика

Срок сдачи к 31 дек.

3 минуты назад

создание ролика

Другое, Право

Срок сдачи к 25 дек.

4 минуты назад

Контрольная, Логика

Контрольная, Логика

Срок сдачи к 27 дек.

4 минуты назад

1. решить файл перечень заданий exel

Решение задач, Информационные технологии

Срок сдачи к 28 дек.

4 минуты назад

Пересечение криволинейных поверхностей плоскостью треугольника АВС

Решение задач, Начертательная геометрия

Срок сдачи к 10 янв.

6 минут назад

Решить задачу

Решение задач, Теоретическая механика

Срок сдачи к 26 дек.

7 минут назад

выполнить задания

Решение задач, Актуальные проблемы права интеллектуального собственности

Срок сдачи к 28 янв.

8 минут назад

Химия

Презентация, Химия

Срок сдачи к 25 дек.

8 минут назад

Нужен визуалмейкер для моих фоток

Другое, Фотография

Срок сдачи к 18 февр.

9 минут назад

Органихзация рекламного агенства

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

10 минут назад

Тема: имидж современного руководителя

Курсовая, менеджмент сфере культуры и искусства

Срок сдачи к 26 дек.

11 минут назад

Практика в уголовном розыске

Отчет по практике, Уголовный процесс

Срок сдачи к 26 дек.

11 минут назад

Нужно решить 30 тестов по экономике

Тест дистанционно, Экономика

Срок сдачи к 5 февр.

11 минут назад

президент рф

Реферат, Основы российской государственности

Срок сдачи к 25 дек.

11 минут назад

Практическая работа по дисциплине «Информационное обеспечение логистических процессов»

Другое, Операционная деятельность в логистике

Срок сдачи к 26 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно