Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение прикладных задач методом дихотомии

Тип Реферат
Предмет Информатика
Просмотров
359
Размер файла
145 б
Поделиться

Ознакомительный фрагмент работы:

Решение прикладных задач методом дихотомии

Кафедра

информатики и вычислительной информатики

Дисциплина «ИНФОРМАТИКА»

ОТЧЕТ

по курсовой работе

Тема: «Решение прикладных задач методом дихотомии »

Москва 2009 г.

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Вариант № 11.

Часть 1

Использование численных методов решения нелинейных уравнений, используемых в прикладных задачах.

Для выполнения 1 части необходимо:

· Составить программу и рассчитать значение функции в левой части нелинейного уравнения для решения задачи отделения корней;

· Составить логическую схему алгоритма, таблицу идентификаторов и программу нахождения корня уравнения методом дихотомии и методом Ньютона;

· Ввести программу в компьютер ,отладить, решить задачу с точностью ε=0.0001 и вывести результат;

· Предусмотреть в программе вывод на экран дисплея процесса получения корня.

Уравнение: , [1,2];

Метод численного решения: метод дихотомии,метод хорд.

Решение.

Метод дихотомии

1. Этот метод позволяет отыскать корень уравнения f()=0 с любой наперед заданной точностью ε.

Предполагается,что искомый корень уравнения уже отделен,т.е. указан отрезок [ a ; b ] непрерывности функции f(x) такой,что на концах этого отрезка функция принимает различные значения.

Суть метода в том, что [ a ;b ] делится пополам.Половина, где нет корня отбрасывается, а другая делиться на два.

1-й Шаг.Вычисление середины отрезка

Еслиf()=0, то мы нашли точный корень уравнения.

Еслиf() · f(x0)<0, то находится в интервале [] следовательно ;

Иначе

2-й Шаг.Вычисление середины отрезка

Еслиf()=0, то мы нашли точный корень уравнения.

Еслиf(· f(x1)<0 , то ;

Иначе

n-ый Шаг.Вычисление середины отрезка

Еслиf()=0, то мы нашли точный корень уравнения.

Еслиf(·f(xn)<0 , то ;

Иначе

Условием нахождения корня является:

2. Нелинейное уравнение и условие его решения:

, [1,2], ε = 0,0001;

3. График функции:


4. Схема алгоритма:


5. Таблица идентификаторов:

ОбозначениеИдентификаторТип
nnint
adouble
bdouble
epsdouble
xxdouble
f(x)f(x)double

6. Листингпрограммы:

#include<stdio.h>

#include<math.h>

double f(double x)

{

return 0.25*(pow(x,3))+x-1.2502;

}

int main(void)

{

int n=0;

double x,a=0.,b=2.,eps=0.0001;

while (fabs(a-b)>2*eps)

{

x=(a+b)/2,

n++;

printf("step=%3i x=%11.8lf f(x)=%11.8lfn",n,x,f(x));

if (f(x)==0)

{

printf("Tothnii koreni x=%lfnkolithestvo iteratsii n=%in",x,n);

return 0;

}

else if (f(a)*f(x)<0) b=x;

else a=x;

}

printf("Reshenie x=%11.8lf pri Eps=%lfnkolithestvo iteratsii n=%in",x,eps,n);

return 0;

}

7. Листинг решения:

step= 1x= 1.50000000f(x)=-0.21392288

step= 2x= 1.25000000f(x)=-0.00893133

step= 3x= 1.12500000f(x)= 0.08982692

step= 4x= 1.18750000f(x)= 0.04080796

step= 5x= 1.21875000f(x)= 0.01602415

step= 6x= 1.23437500f(x)= 0.00356738

step= 7x= 1.24218750f(x)=-0.00267680

step= 8x= 1.23828125f(x)= 0.00044659

step= 9x= 1.24023438f(x)=-0.00111478

step= 10 x= 1.23925781f(x)=-0.00033401

step= 11 x= 1.23876953f(x)= 0.00005631

step= 12 x= 1.23901367f(x)=-0.00013885

step= 13 x= 1.23889160f(x)=-0.00004127

Reshenie x= 1.23889160 pri Eps=0.0001

kolithestvo iteratsii n=13


Метод хорд:

1. Этот метод заключается в том, что к графику функции проводится хорда. Находим точку пересечения с осью OX и опускаем из этой точки прямую параллельную OY. Из точки пе-ресечения прямой и графика проводим хорду и операция повторяется до тех пор, пока точка пересечения хорды с осью OX не приблизиться к корню функции до заданной погрешности.

Шаг первый:

Нас интересует точка пересечения с осью ОХ.

Сделаем допущение: х=x1

y=0

Введем обозначение

x0

f()=f(x0)

Подставим в уравнение

Отсюда

x1=x0-

Шаг второй:

x2=x1-

Для n-го шага:

xn=xn-1-

Условием нахождения корня является:

2. Нелинейное уравнение и условие его решения:

, [1,2], ε = 0,0001;

3. График функции:

Таблица идетификаторов:

ОбозначениеИдентификаторТип
nnint
adouble
bdouble
epsdouble
xxdouble
f(x)f(x)double

6. Листингпрограммы:

#include<stdio.h>

#include<math.h>

double f(double x)

{

return (0.25*(pow(x,3)))+x-1.2502;

}

int main(void)

{

int n=0;

double x,a=1.,b=2.,eps=0.0001,xn;

xn=a;

while (fabs(xn-x)>eps)

{

x=xn;

n++;

xn=x-f(x)*(b-x)/(f(b)-f(x));

printf("step=%3i x=%11.8lf f(x)=%11.8lfn",n,xn,f(xn));

}

printf("pribligennoe znathenie x=%lf pri Eps=%lfnkolithestvo iterasii n=%in",xn,eps,n);

return 0;

}

7. Листинг решения:

step= 1 x= 1.22334934 f(x)= 0.01236182

step= 2 x= 1.23796144 f(x)= 0.00070219

step= 3 x= 1.23879055 f(x)= 0.00003951

step= 4 x= 1.23883720 f(x)= 0.00000222

pribligennoe znathenie x=1.238837 pri Eps=0.0001

kolithestvo iterasii n=4

Анализ результатов:

метод дихотомииметод хорд
значение корня1.238891601.23883720
значение функции-0.000041270.00000222
количество итераций134

Вывод: Метод дихотомии прост в реализации, но обладает малой скоростью сходимости по сравнению с методом хорд, что выражается в количестве шагов. Метод хорд к тому же обладает большей точностью.


Часть 2

Решение дифференциального уравнения.

Вариант №11.

Метод Эйлера

1.Математическое описание

Геометрический смысл метода Эйлера состоит в следующем: дифференциальное уравнение определяет в точке (x0,y0) направление касательной к искомой интегральной кривой

k0=y'(x0)=f(x0,y0)

Отрезок интегральной кривой, соответствующий x(x0,x1), x1=x0+h заменяется участком касательной с угловым коэффициентом k. Найденная точка (x1,y1) используется в качестве нового начального условия для уравнения y(x1)=y1,в ней вновь вычисляется угловой коэффициент поля направлений и процедура повторяется.

На n-ом шаге имеем точку (xn-1,yn-1), задающую начальное условие для уравнения:

y(xn-1)=yn-1

Уравнение определяет угловой коэффициент касательной к интегральной кривой в этой точке

Соответствующее уравнение касательной:y-yn-1=k(x-xn-1)

Отсюда получаем значение х=хn, соответствующее точке: хnn-1+h,

А именно: yn-yn-1=kn-1(xn-1+h-xn-1), или

yn=yn-1+h·kn-1

yn=yn-1+h·f(xn-1,yn-1)

Полученная формула является основной расчетной формулой метода Эйлера.

Процесс вычислений заканчивается, когда аргумент после очередного приращения выйдет за пределы исследуемого отрезка .

2. Дифференциальное уравнение:

x0 = 0 , y0 = 1, xmax=1, Δx = 0.01; 0.005; 0.001

3. Схема алгоритма:


5. Таблица идентификаторов:

ОбозначениеИдентификаторТип
ssint
iiint
xxdouble
xmaxx_maxdouble
x1x1double
Δxh[i]double
yydouble
dddouble
f(x)f(x)double
kk(x,y)double

6. Листинг программы:

#include<stdio.h>

#include<math.h>

double k(double x,double y )

{

return ((x/exp(x*x))-2.*x*y);

}

double f(double x)

{

return ((1./exp(x*x))*(1+x*x/2.));

}

int main(void)

{

int s,i;

double x,x1,x_max=1,y,d;

double h[3]={0.01,0.005,0.001};

FILE*file;

file=fopen("result.txt","w+");

for (i=0;i<=2;i++)

{ s=0;y=1;

fprintf(file,"h(%i)=%lfn",i,h[i]);

for(x=0;x<=x_max;x+=h[i])

{

s++;

x1=x+h[i];

y=y+k(x,y)*h[i];

d=y-f(x1);// y- pribl. f(x)- tochnoe

printf(" step =%4.i x=%6.4lf y=%6.4lf yt=%6.4lf d=%10.8lfn",s,x1,y,f(x1),d);

fprintf(file," step =%4.i x=%10.8lf y=%10.8lf yt=%10.8lf d=%10.8lfn",s,x1,y,f(x1),d);

}

}

fclose(file);

return 0;



Вывод: Интегрированная среда Visual С позволяет обрабатывать программы ,записанные на языке С++ .Для программирования циклических алгоритмов были использованы операторы организации циклов с параметрами, решение использует форматируемый вывод и оператор присваивания, а также использовались операторы вызова функций. Чем больше шаг, тем точнее вычисления.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно