Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Характеристики систем автоматического управления

Тип Реферат
Предмет Информатика
Просмотров
1596
Размер файла
127 б
Поделиться

Ознакомительный фрагмент работы:

Характеристики систем автоматического управления

Теория автоматического управления

Тема:

"Характеристики систем автоматического управления"

1. Статические характеристики САУ

Статические характеристики определяют статику системы, т.е. ее поведение в установившемся режиме.

Статической характеристикой называется отношение выходной величины к входной величине в установившемся режиме.

Статические характеристики позволяют: определить коэффициент усиления системы; степень ее нелинейности; величину статизма; произвести согласование рабочих точек системы.

2. Динамические характеристики САУ

Динамические характеристики определяют динамику системы, т.е. ее поведение в неустановившемся (переходном) режиме. При этом используют следующие основные динамические характеристики:

– передаточная функция;

временные характеристики;

частотные характеристики.

2.1 Передаточная функция системы и ее свойства

Дифференциальное уравнение линейной системы имеет вид:

(1)

где аi и bi – параметры системы, n-порядок системы.

Если применим теоремы Лапласа при нулевых начальных условиях, то дифференциальное уравнение в операторной форме запишется следующим образом

где

Физически нулевые начальные условия обозначают, что до приложения воздействия система находилась в покое.

Передаточная функция системы есть отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях

(2)

Основные свойства передаточной функции:

1. Передаточная функция является полной характеристикой системы.

Она полностью характеризует статические и динамические свойства системы.

2. Статический коэффициент усиления, т.е. коэффициент усиления в установившемся режиме (при t®¥ или p®0) равен

.

3. Полином знаменателя называется характеристическим, а A(p) = 0 называется характеристическим уравнением. Корни полинома знаменателя называются полюсами, а числителя нулями.

Степень полинома числителя не превышает степени полинома знаменателя (n³m), в противном случае система является физически нереализуемой.

5. Коэффициенты полиномов ai и bi обусловлены реальными физическими параметрами системы.

6. Передаточная функция может быть задана в виде нулей и полюсов в графическом виде.


Рис. 1

Например, для приведенного на рис. 1 расположения нулей (0) и полюсов (х) передаточная функция имеет вид:

.

2.2 Временные характеристики САУ

Временной характеристикой системы называется закон изменения выходной величины в функции времени при изменении входного воздействия по определенному закону и при условии, что до приложения воздействия система находилась в покое. Временные характеристики определяются как реакция системы на типовые воздействия при нулевых начальных условиях.

К основным временным характеристикам относятся переходная функция и функция веса.

Типовые воздействия. В качестве типовых воздействий при исследовании систем используются:

– единичная функция;

– единичный импульс;

линейно – растущее воздействие;

– квадратичное воздействие;

– гармоническое воздействие;

– «белый шум» (используется при исследовании стохастических систем).

Единичная функция. Единичная функция – воздействие, амплитуда которого равна 0 при t < 0 и равна 1 при t ³ 0.

Свойства единичной функции и единичной функции со сдвигом определяются соотношениями:

или (3)

а их графическое изображение имеет вид, приведенный на рис. 2а, б.


а) б)

Рис. 2

При этом изображение единичного воздействия имеет вид:

(4)

Единичный импульс. Единичный импульс (d – функция) – это идеализированный сигнал, который характеризуется бесконечно малой длительностью, бесконечно большим уровнем (амплитудой) и площадью равной единице.

Единичный импульс и импульс со сдвигом описываются соотношениями:

или (5)

а их графическое изображение имеет вид, приведенный на рис. 3а, б.


а) б)

Рис. 3

При этом изображение единичного импульса имеет вид

(6)

Основные свойства дельта – функции

1. – площадь или интенсивность d – функции;

2. -фильтрующее свойство;

3. ;

- связь d – функции с единичной функцией;


5. .

Свойства дельта – функции широко используются в методах исследования САУ.

Линейно-растущее воздействие. Линейно-растущее воздействие – это воздействие с постоянной скоростью изменения сигнала. Такое воздействие чаще всего используется для определения точности систем и описывается соотношением:

. (7)

Графическое изображение линейно – растущего воздействия имеет вид, приведенный на рис. 4а.

При этом,

. (8)


а) б)

Рис. 4

Квадратичное воздействие. Квадратичное воздействие – это воздей-ствие с постоянным ускорением изменения сигнала. Такое воздействие чаще всего используется для определения точности систем и описывается соотношением:

. (9)

Графическое изображение квадратичного воздействия имеет вид, приведенный на рис. 5.

При этом,

. (10)

Переходная функция. Переходная функция h(t) – реакция системы на единичное воздействие при нулевых начальных условиях.

Пусть задана система (рис. 5) с передаточной функцией K(p)


Рис. 5

В изображениях выходная величина равна .

Так как , то изображение выходной величины равно

.


При этом связь между передаточной и переходной функцией имеет вид:

. (11)

Начальное значение переходной функции равно нулю, а установившееся значение определяется с помощью теоремы о конечном значении функции

. (12)

Весовая функция. Весовая функция k(t) – реакция системы на единичный импульс при нулевых начальных условиях.

Пусть задана система (рис. 6) с передаточной функцией K(p)


Рис. 6

В изображениях выходная величина равна , а в оригиналах определяется с помощью интеграла свертки

. (13)

Так как , то .

При этом связь между передаточной и весовой функцией имеет вид:


, (14)

т.е. весовая функция представляет оригинал передаточной функции.

Установившееся значение весовой функции определяется с помощью теоремы о конечном значении функции

. (15)

Связь между переходной и весовой функцией имеет вид:

. (16)

Методы определения временных характеристик

Существуют различные методы расчета переходных процессов, при этом наиболее часто используются следующие методы:

1. Классический метод.

2. Операторный метод, использующий разложение на простые дроби.

3. Операторный метод, использующий вычеты.

Метод аналогового и цифрового моделирования.

5. Метод трапеций.

Рассмотрим некоторые методы определения временных характеристик на конкретных примерах.

Классический метод расчета временных характеристик

Классический метод расчета временных характеристик основан на решении дифференциальных уравнений.

Пример 1. Пусть дана передаточная функция:


Определить: переходную функцию – h(t) и функцию веса – k(t).

Решение

1. Запишем дифференциальное уравнение в соответствии с заданной передаточной функцией

При единичном воздействии, т.е. x(t)=1(t) дифференциальное уравнение имеет вид

.

2. Общее решение неоднородного дифференциального уравнения состоит из свободной и вынужденной составляющей

.

3. Переходная функция может быть определена из соотношения

При нулевых начальных условиях


При этом выражения для переходной функции и функции веса имеют вид:

Метод разложение на простые дроби

Рассмотрим алгоритм использования метода на предыдущем примере. Определим функцию веса для заданной системы.

Исходную передаточную функцию можно представить в виде:

Значения параметров А и В находим методом неопределенных коэффициентов

Функция веса равна:

Определим переходную функцию.

Изображение переходной функции можно представить в виде:


Значения параметров А, В и С находим методом неопределенных коэффициентов.

Переходная функция равна:

Определение временных характеристик с использованием вычетов

Рассмотрим алгоритм использования метода на предыдущем примере. Определим функцию веса для заданной выше системы. В соответствии с теоремой разложения:

если

где ,

то

.


Таким образом, используя теорему Коши о вычетах, оригинал можно определить как сумму вычетов по полюсам подынтегральной функции.

Рассмотрим изображение переходной функции:

Запишем характеристическое уравнение, определим значения полюсов их количество и кратность

При этом переходную функцию определяем, используя вычеты по полюсам подынтегральной функции

Функция веса определяем аналогично, либо через производную от переходной функции

2.3 Частотные характеристики САУ

Частотные характеристики определяются, как реакция системы на гармоническое типовое воздействие при нулевых начальных условиях.

Пусть задана система (рис. 7) с передаточной функцией K(p).


Рис. 7

При подаче на вход системы гармонического воздействия

, (17)

на выходе получим (18)

Если использовать формулы Эйлера, эти соотношения можно представить в комплексном виде:

(19)

Если выполнить подстановку p = jw в передаточной функции системы, то получим комплексную передаточную функцию


(20)

При изменении частоты 0£w£+¥ получим следующие частотные характеристики:

АФХ – амплитудно-фазовая частотная характеристика;

ВЧХ – вещественная частотная характеристика;

МЧХ – мнимая частотная характеристика;

АЧХ – амплитудно-частотная характеристика;

ФЧХ – фазовая частотная характеристика.

Частотные характеристики могут быть выражены через коэффициенты полиномов передаточной функции

(21)

Графически характеристики можно представить в виде рис. 8а.

Связь между временными и частотными характеристиками.

Рассмотрим связь между частотными характеристиками и переходной функцией системы (рис. 8б).



а) б)

Рис. 8

Для выходной величины можно записать

.

Используя преобразование Фурье, получим выражение для переходной функции

(22)

Подставив эти выражения в формулу для h(t) и выполнив преобразования, получим связь между переходной функцией и ВЧХ:

(23)

Логарифмические частотные характеристики САУ

Исследование систем существенно упрощается при использовании не обычных, а логарифмических частотных характеристик. При этом натуральная логарифмическая амплитудная и фазовая частотные характеристики определяются из соотношений

. (24)

На практике обычно используют десятичные логарифмы. При этом логарифмическая амплитудно-частотная характеристика (ЛАЧХ) строится в логарифмическом масштабе частот и определяется соотношением

.

Единицей измерения ЛАЧХ является децибел (дБ), 1дБ = 1/10 [Бел].

Так как 1 Бел соответствует увеличению мощности в 10 раз, то

(25)

Амплитуда сигнала откладывается по оси ординат (рис. 9а), при этом ось абсцисс соответствует значению амплитуды равной единице, верхняя полуплоскость соответствует усилению сигнала (A > 1), а нижняя – ослаблению (A < 1).

Логарифмическая фазовая частотная характеристика (ЛФЧХ) строится в логарифмическом масштабе частот, при этом частоты откладываются по оси абсцисс по декадам (рис. 9б). Декада – отрезок, на котором частота увеличивается в десять раз.



а) б)

Рис. 9

Начало оси координат, в зависимости от диапазона частот, на котором строится логарифмическая характеристика, может быть помещено в любую точку (w = 0,01; w = 0,1; w = 1 и т.д.).

Логарифмические характеристики имеют ряд преимуществ перед обычными частотными характеристиками. Основным преимуществом логарифмических характеристик является возможность оценки влияния отдельных параметров системы без необходимости повторного проведения расчета.

Литература

1. Автоматизированное проектирование систем автоматического управления. / Под ред. В.В. Солодовникова. – М.: Машиностроение, 1990. -332 с.

2. Бойко Н.П., Стеклов В.К. Системы автоматического управления на базе микро-ЭВМ. – К.: Тэхника, 1989. –182 с.

3. В.А. Бесекерский, Е.П. Попов «Теория систем автоматического управления». Профессия, 2003 г. – 752 с.

4. Воронов А.А., Основы теории автоматического управления, ч. 3, М. – Л., 1970.

5. Гринченко А.Г. Теория автоматического управления: Учебн. пособие. – Харьков: ХГПУ, 2000. –272 с.

6. Емельянов С.В., Системы автоматического управления с переменной структурой, М., 1967.

7. Макаров И.М., Менский Б.М. Линейные автоматические системы. - М.: Машиностроение, 1982.

8. Справочник по теории автоматического управления. / Под ред. А.А. Красовского – М.: Наука, 1987. – 712 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно