Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Система обработки данных на базе микроконтроллера ATmega161

Тип Реферат
Предмет Информатика
Просмотров
1331
Размер файла
258 б
Поделиться

Ознакомительный фрагмент работы:

Система обработки данных на базе микроконтроллера ATmega161

Содержание

Введение

1. Структурная схема системы

1.1 Анализ технического задания

1.2 Структурная схема устройства

1.3 Описание микроконтроллера ATmega161

2. Разработка и описание схемы

2.1 Процессорный блок

2.2 Расчет ОЗУ

2.3 Описание адаптера параллельного интерфейса

2.4 Программирование адаптера параллельного интерфейса

Вывод

Список использованной литературы

Приложение А


Введение

В настоящее время происходит очень быстрое развитие компьютерных технологий. Большинство цифровых систем строится на микропроцессорах или на микроконтроллерах. Управление различными технологическими процессами происходит при помощи микропроцессорных систем или при помощи технологических операций. Данные системы практически универсальны, так как они имеют очень высокое быстродействие и достаточную разрядность для обработки информации на производстве.

Микропроцессор представляет собой функционально законченное устройство, состоящее из одной или нескольких программно-управляемых БИС и служит для выполнения операций по обработке информации и управления вычислительным процессом. Центральное место в структуре микропроцессорного устройства занимает микропроцессор, который выполняет арифметические и логические операции над данными, программное управление процессором обработки информации, а также организует взаимодействие всех устройств, входящих в систему.

Для реализации устройств обработки информации (УОИ) используют аппаратные, программные, программные и аппаратно-программные средства. При аппаратных получают устройство обработки информации с "жесткой" логикой, что обеспечивает наибольшее быстродействие, но требует большие аппаратные затраты. При программных УОИ реализуется в виде программы для типовой универсальной микро-ЭВМ, предназначенной для встраивания непосредственно в разрабатываемые блоки. При аппаратно-программных предполагается разработка как программных, так и аппаратных средств на базе микропроцессоров (МП).

В данной расчетно-графической работе будет рассмотрен микроконтроллер ATmega161. Для этого необходимо знать архитектуру БИС и микропроцессорного комплекта, представлять взаимодействие БИС в системе и овладеть программированием, прежде всего на языке ассемблера.

1. СТРУКТУРНАЯ СХЕМА СИСТЕМЫ

1.1 Анализ технического задания

Необходимо разработать микропроцессорную систему обработки данных на базе микроконтроллера ATmega161. Система кроме процессорного блока включает блок памяти, информационная емкость ОЗУ которого составляет 1К´16 бит.

Блок периферийных устройств представлен регистрами защелками и дешифратором.

Регистр-защёлка D2 служит для выделения младшего байта адреса по сигналу ALE.

Селектор адреса СА служит для адресации адаптера параллельного интерфейса i8255.

1.2 Структурная схема устройства

Система состоит из микроконтроллера ATmega162, порты которого используются для вывода адреса ОЗУ, подключен адаптер параллельного интерфейса i8255. Взаимодействие микроконтроллера с внешней памятью и периферийными устройствами осуществляется по шине адреса. Данные передаются и принимаются микроконтроллером по шине данных. Управляющие сигналы передаются по шине управления.

ОЗУ подключены своими адресными входами к шине адреса и передают и принимают данные по шине данных. Адрес формируется на контактах портов РА – 8 младших разрядов и РС – старшие разряды. Обмен данными с ОЗУ микроконтроллер осуществляет через порт РА. Поэтому младшие разряды адреса на время обмена сохраняются на время обмена в регистре-защелке. Структурная схема устройства приведена ниже на рис.1.


Рис.1 Структурная схема системы

1.3 Описание микроконтроллера ATmega162

Схема цоколевки микроконтроллера ATmega162 приведена на рис.2

Рис. 2 Условное графическое обозначение микроконтроллера ATmega162

ATmega162/162V – микропотребляющий 8-разрядный КМОП-микроконтроллер, построенный с использованием расширенной RISC – архитектуры AVR. Эта микросхема является прямой заменой микросхемы ATmega161, обладая при этом расширенными характеристиками. Выполняя команду за один период тактовой частоты, ATmega162 имеет производительность около 16 миллионов операций в секунду, что позволяет разработчикам создавать оптимальные по скорости и потребляемой мощности системы. Структурная схема микроконтроллера ATmega162 приведена в приложении А.

Наименование выводов ATmega162:

RESET – вход системного сброса.

XTAL1, XTAL2 – выводы для подключения кварцевого резонатора.

РА0 ÷ РА7 – 8-разрядный двунаправленный порт А ввода/вывода с третьим состоянием, при роботе с внешней памятью является совмещенной шиной адресе данных (адрес необходимо по сигналу ALE занести в регистр).

PB0 ÷ PB7 – 8-разрядный двунаправленный порт В ввода/вывода с третьим состоянием, который имеет альтернативные функции:

OC0/ТО(РВО) – вход внешнего сигнала таймера/счетчика ТО либо выход таймера/счетчика ТО в режимах Compare, PWM.

OC2/Т1(РВ1) – вход внешнего сигнала таймера/счетчика Т1.

AIN0(PB2) – положительный вход компаратора.

AIN1(PB3) – отрицательный вход компаратора.

SS(PB4) – выбор подчиненного устройства (slave) на шине SPI (последовательный интерфейс).

MOS1(PB5) – выход главного (master) или вход подчиненного (slave) устройства данных модуля SPI.

MІS0(PB6) – вход главного (master) или выход подчиненного (slave) устройства данных модуля SPI.

SCK(РВ7) – выход главного (master) или вход подчиненного (slave) устройства тактового сигнала модуля SPI.

PC0 ÷ PC7 – 8-разрядный двунаправленный порт С ввода/вывода с третьим состоянием, имеет альтернативную функцию – передает старший байт адреса (А8÷А15) при работе с внешней памятью.

PD0÷PD7 – 8-разрядный двунаправленный порт D ввода/вывода с третьим состоянием, имеет альтернативные функции:

RxD0(PD0) – вход приемника универсального асинхронного последовательного порта (USART).

TxD0(PD1) – выход передатчика универсального асинхронного последовательного порта (USART).

INT0(PD2) – вход внешнего прерывания.

INT1(PD3) – вход внешнего прерывания.

XCK0(PD4) – вход/выход внешнего сигнала синхронизации (тактового сигнала USART).

OC1A(PD5) – выход А таймера/счетчика Т1 в режиме сравнения (Compare) и в режиме шин сигнала (PWM).

WR(PD6) – строб записи во внешнее ОЗУ.

RD(PD7) – строб чтения из внешнего ОЗУ.

РЕ0÷РЕ2 – 3-разрядный двунаправленный порт Е ввода/вывода с третьим состоянием, имеет альтернативные функции:

РЕ0(INT2) – вход внешнего прерывания 2.

ICP1 – вход захвата таймера/счетчика Т1 (режим Compare).

РЕ1(ALE) – строб адреса внешнего ОЗУ, записывается адрес в регистр-защелку.

PE2(OC1B) – выход В таймера/счетчика Т1 в режиме Compare и PWM.

GND – общий вывод.

Vcc – вывод источника питания.

Основные технические характеристики:

· Тактовая частота 0…16 МГц (0…8 МГц для версии V)

· Встроенный RC-генератор 1/2/4/8 МГц с возможностью калибровки

· 4 внешних источника тактирования

· 131 команда (большинство команд выполняется за 62,5 наносекунды)

· Аппаратный умножитель (время выполнения команды умножения 8х8 – 125 наносекунд)

· 16 Кбайт загружаемой в системе Flash-памяти (не менее 10000 циклов перезаписи)

· 512 байт ЭСПЗУ (не менее 100000 циклов перезаписи)

· 1 Кб ОЗУ

· 32 рабочих регистра

· 35 программируемых линий ввода/вывода

· SPI-интерфейс для внутрисхемного программирования

· Два 8-битных таймера/счетчика с раздельными делителями и режимами сравнения

· Два 16-битных таймера/счетчика с режимами сравнения и захвата

· Таймер часов реального времени с отдельным внешним тактовым генератором

· Шесть каналов ШИМ

· Программируемый сторожевой таймер со встроенным генератором

· Два полнодуплексных последовательных порта UART/USART с двойной буферизацией

· Интерфейс SPI с режимом Master/Slave

· Встроенная схема сброса при подаче напряжения питания и схема слежения за питанием

· Аналоговый компаратор

· JTAG-порт для подключения внутрисхемного эмулятора ATJTAGICE

· Типовой потребляемый ток в активном режиме:

- 1 МГц, 1,8 В – 600 мкА

- 1 МГц, 3,3 В – 1,2 мА

- 32 кГц, 1,8 В – 90 мкА

- 32 кГц, 3,3 В – 120 мкА

· Пять программируемых режимов пониженного энергопотребления

- потребляемый ток в режиме Power-down – 0,5 мкА (при 1,8 В)

· Диапазон напряжения питания:

- от 1,8 до 5,5 В (для ATmega162V)

- от 2,7 до 5,5 В (для ATmega162)

· Высоконадежная защита от несанкционированного копирования содержимого ПЗУ

· 40-выводной корпус DIP и 44-выводной корпус TQFP/MLF


2. РАЗРАБОТКА И ОПИСАНИЕ СХЕМЫ

2.1 Процессорный блок

Процессорный блок состоит из микроконтроллера ATmega162, регистра защелки младшей части адреса RG. Адрес формируется на выходе портов РА – младшая часть adr(0..7) на внутренней шине AdrDat, которая попадает на системную шину адреса после регистра защелки Adr, и РС – старшая часть, которая непосредственно подается на системную Adr - разряды adr(8..15). Обмен данными с памятью и внешними устройствами, осуществляется как по внутренней шине Dat, которая совмещена с шиной младшей части адреса и подключена к порту РА dat(0..7)=adr(0..7), так и по порту РС.

Сигнал ALE является сигналом защелкивания младшей части адреса в регистр RG.

РD2, РD3 – линии приема запроса на прерывание по вводу данных от внешнего устройства, РD6 и РD7 – линии сигналов записи и чтения.

2.2 Расчет ОЗУ

Исходные данные:

Количество ячеек внешнего ОЗУ NОЗУ – 21 Кбайт

Количество входов параллельного интерфейса:

режим 0 – 10

режим 1 – 8

Входные токи:

при логическом 0, IIL – 3,2 мА

при логической 1, IIH – 2 мА

Входная емкость логических схем нагрузки, СI – 5 пФ

Монтажные емкости всех цепей (См = 20 пФ).

Согласно заданию количество ячеек памяти ОЗУ составляет NОЗУ.

Разрядность ОЗУ nОЗУ должна соответствовать разрядности обработки данных ЦП.

Информационная емкость СОЗУ определяется по формуле:

Необходимое быстродействие ОЗУ определяется по временным диаграммам ЦП. Для МК ATmega162 время цикла записи (чтения) tС равно 3ТМТ, где ТМТ - длительность машинного такта.

При частоте кварцевого резонатора fтг = (8-16) МГц время Тмт = 345нс.

Время цикла микросхемы памяти tcy должно удовлетворять неравенству:

В качестве микросхемы ОЗУ выберем К537РУ17, поскольку она будет (прогнозируемо) наименее избыточна для данного случая. Для данной микросхемы памяти.

Рассчитаем число БИС ОЗУ в ряду матрицы:

где nБИС - разрядность выбранной микросхемы памяти. Квадратные скобки здесь и в дальнейшем показывают, что результат необходимо округлить до большего значения.

Определим число разрядов матрицы:

где NБИС - количество ячеек памяти выбранной микросхемы памяти.

Общее число БИС ОЗУ равно

Таким образом, число корпусов ОЗУ = 3.

Определяем токовую IDL и IDH и емкостную СD нагрузки для схем ввода информации в ОЗУ по формулам:

IDL = mc * IIDL = 3 * 3,2 = 9,6 мА

IDH = mc * IIDH = 3 * 2 = 6 мА

CD = mc * CID + Cm = 3 * 5 + 20 = 35 пФ

где IIDL, IIDH - входные токи логического 0 и логической 1 по информационным цепям выбранной БИС ОЗУ. CID - входная емкость по информационному входу БИС ОЗУ.

Определяем токи нагрузки и емкостную нагрузку для схем ввода адреса по адресным цепям БИС ОЗУ по формулам:

IAL = m * IIAL = 3 * 3,2 = 9,6 мА

IAH = m * IIAH = 3 * 2 = 6 мА

CA = m * CIA + Cm = 3 * 5 + 20 = 35 пФ


где IIАL, IIAH - входные токи логического 0 и логической 1 по адресным цепям выбранной БИС ОЗУ. C - входная емкость по адресному входу БИС ОЗУ.

Определяем токи нагрузки ICSL и ICSH и величину емкостной нагрузки СCS по цепям выбора микросхем (CS) по формулам:

ICSL = mp * IICSL = 1 * 3,2 = 3,2 мА

ICSH = mp * IICSH = 1 * 2 = 2 мА

CCS = mp * CICS + Cm = 1 * 5 + 20 = 25 пФ

где IICSL, IICSH - входные токи логического 0 и логической 1 по цепям выбора (CS) БИС ОЗУ. CСS - входная емкость по цепям выбора (CS) БИС ОЗУ.

Рис. 3 Условное графическое обозначение ОЗУ К537РУ17

Наименование выводов:

A0 ÷ A12 – адресные входы.

W/R – запись/чтение.

CS1, CS2 – chip select, чип выбора.

CEO – разрешающий выход.

D0 ÷ D7 – шина данных ввода/вывода.

ОЗУ представляет собой статическое асинхронное оперативное запоминающее устройство.

Режимы работы:

W/R

CS1

CS2

OE

A0..12

D0..7

Режим

Х

Н

X

X

Адрес

Данные

Хранение

Х

Х

L

Х

Хранение

Н

L

Н

H

Запрет выхода

Н

L

H

L

Чтение

L

L

Н

Н

Запись

L

L

Н

L

Запись

Х – любая комбинация уровней либо L, либо H

2.3 Описание адаптера параллельного интерфейса

Адаптер параллельного интерфейса служит для расширения разрядности шины данных, а также приводит к повышению нагрузочной способности.

Адаптер параллельного интерфейса i8255 имеет три восьмиразрядных порта А, В и С с 3-м состоянием. Причем порт С разделен на две тетрады. Все три порта могут быть запрограммированы на ввод или вывод, причем каждая тетрада порта С может быть запрограммирована раздельно. Данные поступают в АПИ через шину данных D0…D7. С помощью сигнала CS осуществляется выбор кристалла, если сюда поступает низкий уровень сигнала, то порты будут установлены в 3-е состояние. А1, А0 – младшие разряды адреса, они служат для адресации внутренних регистров адаптера. Если количество линий ввода и вывода превышает возможности адаптера, то следует применить несколько адаптеров.


Рис. 4 Условное графическое обозначение АПИ i8255

Наименование выводов:

D0 ÷ D7 – шина данных.

CS – выбор кристалла, активный 0 – адаптер подключен к PPI, если 1 – адаптер имеет третье высокоимпедансное состояние.

A0, A1 – младшие разряды адреса, служат для адресации внешних регистров адаптера.

WR – запись, поступает от МК.

RD – чтение, поступает от МК.

RESET – системный сброс.

PA0 ÷ PA7 – 8-разрядный двунаправленный порт A с третьим состоянием.

PB0 ÷ PB7 – 8-разрядный двунаправленный порт B с третьим состоянием.

PB0 ÷ PB7 – разделен на 2 части, 8-разрядный двунаправленный порт С с третьим состоянием.

Адаптер имеет три режима роботы. Рассмотрим некоторые особенности каждого из режимов:

Режим 0 применяется в программно-управляемом вводе-выводе с медленно действующими периферийными устройствами. В режиме 0 базового ввода-вывода могут работать все три порта, причем порт С разделяется на два независимых четырехбитных порта.

Режим 1 - стробируемый ввод-вывод. Он предназначен для однонаправленных передач данных, инициируемых прерываниями. Собственно передача слов данных осуществляется через порты А и В, а шесть линий порта С используются для управления обменом. Данный режим предоставляет пользователю следующие возможности: запрограммировать один или два параллельных порта с линиями квитирования и прерывания, каждый из которых может работать на ввод или вывод; при использовании только одного порта остальные 13 линий запрограммировать в режиме 0; при определении двух портов в режиме 1 оставшиеся две линии порта С использовать для ввода или вывода в режиме 0. На рис. 5. приведено расположение линий порта С при вводе информации (рис. 5, а) и при выводе информации (рис. 5, б) через порты А и В, где

IO - ввод или вывод в зависимости от значения бита D4 слова приказа (СП).

IBF - ввод в буфер. Устанавливается в 1 и поддерживается в течении всего времени от записи данных ( в А или В ) до момента их чтения из МП.

STB - строб приема. По данному сигналу информация записывается в выбранный порт.

INT - запрос прерывания. Информирует МП о готовности данных к выводу. Подается на вход запрос прерывания ЦП.

OBF - выходной порт полон. Сигнализирует ВУ, что данные находятся в порту А или В.

ACK - подтверждение. ВУ подтверждает прием данных.

Режим 2 - совместный ввод - вывод с квитированием. Осуществляется только по порту А, при этом порт А используется для двунаправленной передачи данных, канал С - выполняет функции управления (квитирования) и прерываний. Порт В можно запрограммировать на ввод или вывод в режимах 0 или 1.

На рис. 6. Приведено расположение линий порта С в режиме 2.

Рис. 5 Распределение линий порта С: а) при вводе информации в порты А и В; б) при выводе информации.

Рис. 6 Расположение линий порта С в режиме 2.

2.4 Программирование адаптера параллельного интерфейса

Программирование адаптера заключается в загрузке слова приказа (СП) в регистр управляющего слова ICW1.

Формат данного регистра представлен ниже


D7 D0

1

M1

M0

BB

BB

M

BB

BB

Описание битов:

· D7 – признак ICW1

· D6, D5 – режим работы для группы А

· D4 – ввод/вывод по порту А (вывод – 0, ввод – 1)

· D3 – ввод/вывод по порту C4…7 (вывод – 0, ввод – 1)

· D2 – режим работы для группы В

· D1 – ввод/вывод по порту B (вывод – 0, ввод – 1)

· D0 – ввод/вывод по порту C0…3 (вывод – 0, ввод – 1)

В данном случае слово приказа можно составить двумя способами:

ICW1=10011110=9Еh

D7 D0

1

0

0

1

1

1

1

0

ICW1=10110011=В3h

D7 D0

1

0

1

1

0

0

1

1

В первом случае:

- в режиме 0 задействовано всего 10 входов – 8 входов порта А и 2 входа порта С, которые работают на ввод;

- в режиме 1 задействовано всего 8 входов – 8 входов порта В, которые работают на ввод.

Во втором случае:

- в режиме 0 задействовано всего 10 входов – 8 входов порта В и 2 входа порта С, которые работают на ввод;

- в режиме 1 задействовано всего 8 входов – 8 входов порта А, которые работают на ввод.

Напишем программу для инициализации АПИ в первом случае:

AddrPPI equ 6000h

ICW1equ 9Еh

movA,#ICW1

movx@dptr,A


Выводы

В ходе выполнения работы была разработана система обработки данных с заданными параметрами ОЗУ и адаптера параллельного интерфейса. Были изучены основные способы разработки устройств обработки информации, базовые методы расчета количества микросхем ОЗУ для обеспечения необходимого количества ячеек памяти микроконтроллеру, способы планирования и синтеза схем на основе микроконтроллеров.


Список использованной литературы

1. Микропроцессорный комплект К1810: Структура, программирование, применение / Ю.М. Казаринов, В.Н. Номоконов, Г.С. Подклетнов, В.Ф. Филиппов; Под ред. Ю.М. Казаринова. – М.: Высш. шк., 1990. – 269с

3. Проектирование микропроцессорной электронно-вычислительной аппаратуры: Справочник / В.Г. Артюхов, А.А. Будняк, В.Ю. Лапий и др. – К.: Техника, 1998. – 263 с

4. Сташин В.В., Урусов А.В., Мологонцева О.Ф. Проектирование цифровых устройств на однокристальных микроконтроллерах. – М.: Энергоатомиздат, 1990. – 224 с

5. Боборыкин А.В. и др. Однокристальные микро-ЭВМ. М.: МИКАП, 1994, - 400 с.: ил.

6. Лебедев О.Н. Применение микросхем памяти в электронных устройствах: Справ. пособие. - М.: Радио и связь, 1994. - 216 с.

7. Евстифеев А.В. Микроконтроллеры AVR семейство Classic фирмы "ATMEL" - 2-е изд., стер. - М.: Издательский дом "Додека XXI", 2004. - 288 с.: ил.

8. Евстифеев А.В. Микроконтроллеры Tiny и Mega фирмы "ATMEL" - М.: Издательский дом "Додека XXI", 2004. - 560 с.


ПРИЛОЖЕНИЕ А

Структурная схема микроконтроллера ATmega162


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно