Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Линейная парная регрессия

Тип Реферат
Предмет Математика
Просмотров
1279
Размер файла
149 б
Поделиться

Ознакомительный фрагмент работы:

Линейная парная регрессия

1. Линейная парная регрессия

1.1. Основные понятия и определения

Корреляционная зависимость может быть представлена в виде

Mx(Y) = j(x) (1)

или My(X) = y(у), где j(x) ¹const, y(у) ¹const.

В регрессионном анализе рассматривается односторонняя зависимость случайной переменной Y от одной (или нескольких) неслучайной независимой переменной Х. Такая зависимость Y от X (иногда ее называют регрессионной) может быть также представлена в виде модельного уравнения регрессии Y от X (1). При этом зависимую переменную Y называют также функцией отклика(объясняемой, выходной, результирующей, эндогенной переменной, результативным признаком), а независимую переменную Хобъясняющей(входной, предсказывающей, предикторной, экзогенной переменной, фактором, регрессором, факторным признаком).

Для точного описания уравнения регрессии необходимо знать условный закон распределения зависимой переменной Y при условии, что переменная Х примет значение х, т.е. Х = х. В статистической практике такую информацию получить, как правило, не удается, так как обычно исследователь располагает лишь выборкой пар значений (xi, yi) ограниченного объема n. В этом случае речь может идти об оценке (приближенном выражении, аппроксимации) по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии:

= ( x, b0, b1, …, bp) (2)

где - условная (групповая) средняя переменной Y при фиксированном значении переменной X = x;b0, b1, …, bp – параметры кривой.

Уравнение (2) называется выборочным уравнением регрессии.

В дальнейшем рассмотрим линейную модель и представим ее в виде

= b0 + b1x. (3)

Для решения поставленной задачи определим формулы расчета неизвестных параметров уравнения линейной регрессии (b0, b1).

Согласно методу наименьших квадратов (МНК) неизвестные параметры b0 и b1 выбираются таким образом, чтобы сумма квадратов отклонений эмпирических значенийyi от значений , найденных по уравнению регрессии (3), была минимальной:

. (4)

На основании необходимого условия экстремума функции двух переменных S = S(b0, b1) (4) приравняем к нулю ее частные производные, т.е.

откуда после преобразований получим систему нормальных уравнений для определения параметров линейной регрессии:

(5)

Теперь, разделив обе части уравнений (5) на n, получим систему нормальных уравнений в следующем виде:

(6)

где соответствующие средние определяются по формулам:

; (7) ; (9)

; (8) . (10)

Решая систему (6), найдем

, (11)

где - выборочная дисперсия переменной Х:

, (12)

- выборочный корреляционный момент или выборочная ковариация:

. (13)

Коэффициент b1 называется выборочным коэффициентом регрессииY по X.

Коэффициент регрессии Y по X показывает, на сколько единиц в среднем изменяется переменная Y при увеличении переменной X на одну единицу.

Отметим, что из уравнения регрессии следует, что линия регрессии проходит через точку , т.е. = b0 + b1.

На первый взгляд, подходящим измерителем тесноты связи Y от Х является коэффициент регрессии b1. Однако b1 зависит от единиц измерения переменных. Очевидно, что для "исправления" b1 как показателя тесноты связи нужна такая стандартная система единиц измерения, в которой данные по различным характеристикам оказались бы сравнимы между собой. Если представить уравнение в эквивалентном виде:

. (14)

В этой системе величина называется выборочный коэффициент корреляции и является показателем тесноты связи.

Если r > 0 (b1 > 0), то корреляционная связь между переменными называется прямой, если r < 0 (b1 < 0), - обратной.

Учитывая (7)–(13) получим следующие формулы для расчета коэффициента корреляции:

; (15)

. (16)

Выборочный коэффициент корреляции обладает следующими свойствами:

1.Коэффициент корреляции принимает значения на отрезке [-1: 1], т.е. -1 ≤ r ≥ 1.

2.Приr=±1 корреляционная связь представляет линейную функциональную зависимость. При этом все наблюдения располагаются на прямой линии.

3. При r = 0 линейная корреляционная связь отсутствует. При этом линия регрессии параллельна оси ОХ.

В силу воздействия неучтенных факторов и причин отдельные наблюдения переменной Y будут в большей или меньшей мере отклоняться от функции регрессии j(Х). В этом случае уравнение взаимосвязи двух переменных (парная регрессионная модель) может быть представлена в виде:

Y = j(X) + e,

где e-случайная переменная (случайный член), характеризующая отклонение от функции регрессии.

Рассмотрим линейный регрессионный анализ, для которого унция j(Х) линейна относительно оцениваемых параметров:

Mx(Y) = b0 + b1x.(17)

Предположим, что для оценки параметров линейной функции регрессии (17) взята выборка, содержащая п пар значений переменных (xi, yi), где i = 1, 2, …, п. В этом случае линейная парная регрессионная модель имеет вид:

yi = b0 + b1xi + ei. (18)

Отметим основные предпосылки регрессионного анализа (условия Гаусса-Маркова).

1. В моделиyi = b0 + b1xi + ei возмущение eiесть величина случайная, а объясняющая переменная xi– величина неслучайная.

2. Математическое ожидание возмущения eiравно нулю:

M(ei) = 0. (19)

3. Дисперсия возмущения eiпостоянна для любого i:

D(ei) = s2. (20)

4. Возмущения ei и ejне коррелированны:

M(eiej) = 0 (i¹j). (21)

5. Возмущения eiесть нормально распределенная случайная величина.

Оценкой модели (18) по выборке является уравнение регрессии
= b0 + b1x. Параметры этого уравнения b0 и b1 определяются на основе МНК. Воздействие неучтенных случайных факторов и ошибок наблюдений в модели (18) определяется с помощью дисперсии возмущений (ошибок) или остаточной дисперсии (см. табл. 1).

Теорема Гаусса-Маркова. Если регрессионная модель
yi = b0 + b1xi + ei удовлетворяет предпосылкам 1-5, то оценкиb0, b1 имеют наименьшую дисперсию в классе всех линейных несмещенных оценок.

Таким образом, оценки b0 и b1 в определенном смысле являются наиболее эффективными линейными оценками параметров b0 и b1.

Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Для проверки значимости выдвигают нулевую гипотезу о надежности параметров. Вспомним основные понятия и определения необходимые для анализа значимости параметров регрессии.

Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным.

Нулевая гипотезаН0 – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п.

Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующейили альтернативнойгипотезой.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость проверить ее. Так как проверку производят статистическими методами, то данная проверка называется статистической.

При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:

- можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);

- можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).

Допустимая вероятность ошибки первого родаможет быть равна 5% или 1% (0,05 или 0,01).

Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).

Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:

1-йуровень - 5% (a = 0,05), где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе для каждого эксперимента;

2-й уровень - 1% (a = 0,01), т. е. соответственно допускается риск ошибиться только в одном случае из ста;

3-й уровень - 0,1% (a = 0,01), т. е. допускается риск ошибиться только в одном случае из тысячи.

Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов эксперимента и потому редко используется. В эконометрических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5%-й уровень значимости.

Статистика критерия- некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией.

Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза, называется критерием проверки данной гипотезы. Статистический критерий – это случайная величина, которая служит для проверки статистических гипотез.

Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы(область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1.

Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:

- задается допустимая вероятность ошибки первого рода (a = 0,05);

- выбирается статистика критерия;

- ищется область допустимых значений;

- по исходным данным вычисляется значение статистики;

- если статистика критерияпринадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это основной принцип проверки всех статистических гипотез.

В современных эконометрических программах (например, EViews) используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные обычно Prob, могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7, 0,23 или 0,012. Понятно, что в первых двух случаях, полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне двенадцати тысячных.

Если вычисленное значение Рrobпревосходит выбранный уровень Рrobкр, то принимается нулевая гипотеза, а в противном случае - альтернативная гипотеза. Чем меньше вычисленное значение Рrob, тем более исходные данные противоречат нулевой гипотезе.

Число степеней свободы у какого-либо параметра определяют как размер выборки, по которой рассчитан данный параметр, минус количество выбранных переменных.

Величина W называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, т.е. вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше W, тем вероятность ошибки второго рода меньше.

Коэффициент регрессии (b1) является случайной величиной. Отсюда после вычисления возникает необходимость проверки гипотезы о значимости полученного значения. Выдвигаем нулевую гипотеза (Н0) о равенстве нулю коэффициента регрессии (Н0:b1 = 0) против альтернативной гипотезы (Н1) о неравенстве нулю коэффициента регрессии (Н1:b1¹ 0). Для проверки гипотезы Н0 против альтернативы используется t-статистика, которая имеет распределение Стьюдента с (n- 2) степенями свободы (парная линейная регрессия).

Коэффициент регрессии надежно отличается от нуля (отвергается нулевая гипотеза Н0), если tнабл > ta;n-2. В этом случае вероятность нулевой гипотезы (Prob.) будет меньше выбранного уровня значимости. ta;n-2- критическая точка, определяемая по математико-статистическим таблицам.

Проверка значимости уравнения регрессии производится на основе дисперсионного анализа.

Согласно основной идее дисперсионного анализа

(22)

или

Q = QR + Qe, (23)

где Q – общая сумма квадратов отклонений зависимой переменной от средней, а QR и Qe – соответственно сумма квадратов, обусловленная регрессией, и остаточная сумма квадратов, характеризующая влияние неучтенных факторов.

Схема дисперсионного анализа имеет вид, представленный в табл. 1.

Средние квадраты и s2 (табл. 1) представляют собой несмещенные оценки дисперсий зависимой переменной, обусловленных соответственно регрессией или объясняющей переменной Х и воздействием неучтенных случайных факторов и ошибок; m – число оцениваемых параметров уравнения регрессии; п – число наблюдений.

При отсутствии линейной зависимости между зависимой и объясняющими(ей) переменными случайные величины и имеют c2-распределение соответственно с т – 1 и пт степенями свободы.

Таблица 1

Компоненты дисперсииСумма квадратовЧисло
степеней свободы
Средние
квадраты
Регрессияm – 1
Остаточнаяnm
Общаяn – 1

Поэтому уравнение регрессии значимо на уровне a, если фактически наблюдаемое значение статистики

, (24)

где - табличное значение F-критерия Фишера-Снедекора, определяемое на уровне значимости a при k1 = m – 1 и k2 = nm степенях свободы.

Учитывая смысл величин и s2, можно сказать, что значение F показывает, в какой мере регрессия лучше оценивает значение зависимой переменной по сравнению с ее средней.

Для парной линейно регрессии т = 2, и уравнение регрессии значимо на уровне a (отвергается нулевая гипотеза), если

. (25)

Следует отметить, что значимость уравнения парной линейной регрессии может быть проведена и другим способом, если оценить значимость коэффициента регрессии b1, который имеет
t-распределение Стьюдента с k = n – 2 степенями свободы.

Уравнение парной регрессии или коэффициент регрессии b1 значимы на уровне a (иначе – гипотеза Н0 о равенстве параметра b1 нулю, т.е.
Н0:b1 = 0, отвергается), если фактически наблюдаемое значение статистики

(26)

больше критического (по абсолютной величине), т.е. |t| > t1 -a; n- 2.

Коэффициент корреляции r значим на уровне a (Н0: r = 0), если

. (27)

Одной из наиболее эффективных оценок адекватности регрессионной модели, мерой качества уравнения регрессии, характеристикой прогностической силы анализируемой регрессионной модели является коэффициент детерминации, определяемый по формуле:

. (28)

Величина R2 показывает, какая часть (доля) вариации зависимой переменной обусловлена вариацией объясняющей переменной.

В случае парной линейной регрессионной модели коэффициент детерминации равен квадрату корреляции, т.е. R2 = r2.

Доверительный интервал для индивидуальных значений зависимой переменной .

-t1 – a; n- 2×££ + t1 -a; n- 2×, (29)

где - оценка дисперсии индивидуальных значений у0 при х = х0.

Доверительный интервал для параметров регрессионной модели.

(30)

1.4. Типичный пример анализа экономических процессов
с использованием пространственных данных

По 28 предприятиям концерна изучается зависимость дневной выработки (ед.) у от уровня механизации труда (%) х по следующим данным (табл. 2).

Таблица 2

Номер пред-приятияУровень механизации, %, хДневная выработка, ед., уНомер пред-приятияУровень механизации, %, хДневная выработка, ед., у
1155156324
2246166425
3426176625
4469187027
54815197231
64814207533
75017217633
85217228042
95322238241
105421248744
115522259053
126023269355
136123279557
146224289962

При анализе статистических зависимостей широко используются графические методы, которые задают направление его дальнейшего анализа. В Excel для этого можно использовать средство Мастер диаграмм. Для создания диаграммы необходимо выделить данные, запустить мастер диаграмм, выбрать тип и вид диаграммы (для нашего примера тип диаграммы – Точечная), выбрать и уточнить ориентацию диапазона данных и ряда, настроить параметры диаграммы.

Для описания закономерностей в исследуемой выборке наблюдений строится линия тренда.

Для добавления линии тренда в диаграмму необходимо выполнить следующие действия:

1) щелкнуть правой кнопкой мыши по ряду данных;

2) в динамическом меню выбрать команду Добавить линию тренда. На экране появится окно Линия тренда (рис. 2);

3) выбрать вид зависимости регрессии. Для нашего примера тип тренда определим, как Линейный;

4) перейти на вкладку Параметры. В поле Показать уравнение на диаграмме установить подтверждение;

5) в случае необходимости можно задать остальные параметры.

Рис. 2. Диалоговое окно для выбора типа тренда

Изобразим полученную зависимость графически точками координатной плоскости (рис. 3). Такое изображение статистической зависимости называется полем корреляции.

По расположению эмпирических точек можно предполагать наличие линейной корреляционной (регрессионной) зависимости между переменными х и у.

По данным табл. 2 найдем уравнение регрессии у по х. Расчеты произведем в Excel по формулам (7)–(13), промежуточные вычисления представим в табл. 3.

Рис. 3. Поле корреляции

Таблица 3

NXYX*YX*XY*Y
11557522525
224614457636
3426252176436
4469414211681
548157202304225
648146722304196
750178502500289
852178842704289
9532211662809484
10542111342916441
11552212103025484
12602313803600529
13612314033721529
14622414883844576
15632415123969576
16642516004096625
17662516504356625
18702718904900729
19723122325184961
207533247556251089
217633250857761089
228042336064001764
238241336267241681
248744382875691936
259053477081002809
269355511586493025
279557541590253249
289962613898013844
Сумма17827765764712458228222
Среднее63,6428627,714292058,8214449,357
Дисперсия398,9439239,8469b10,739465
Cov(x,y)295,0051b0-19,3474

Итак, уравнение регрессии у по х:

= -19,37 + 0,74x.

Из полученного уравнения регрессии следует, что при увеличении уровня механизации х на 1% выработка у увеличивается в среднем на 0,74 ед.

По исходным данным вычислим коэффициент корреляции.

Расчеты произведем в Excel, промежуточные вычисления см. табл. 3 и формулы (15), (16).

= 0,954,

т.е. связь между переменными тесная.

Оценим на уровне значимости a = 0,05 значимость уравнения регрессии у по х.

1-й способ. Используя данные табл. 4 вычислим необходимые суммы по формулам табл. 1:

= 6715,71 (см. столбец 6);

QR = = 6108,09 (см. столбец 7);

Qe = Q-QR = 6715,71 – 6108,09 = 607,63

Таблица 4

NXYYрегYi-Yрег(Yi-Yср)^2(Yрег-Yср)^2(Xi-Xcp)^2
12345678
1155-8,2554113,2554515,93881293,81922366,12755
2246-1,600237,6002471,5102859,34061571,55612
342611,71015-5,7101471,5102256,1325468,413265
446914,66801-5,6680350,2245170,2054311,270408
5481516,14694-1,1469161,6531133,8035244,69898
6481416,14694-2,1469188,0816133,8035244,69898
7501717,62587-0,6259114,7959101,7762186,127551
8521719,1048-2,1048114,795974,1233135,556122
9532219,844262,155732,653161,9372113,270408
10542120,583730,416345,081650,844892,9846939
11552221,323190,676832,653140,846174,6989796
12602325,02052-2,020522,22457,256413,2704082
13612325,75998-2,760022,22453,81936,98469388
14622426,49945-2,499513,79591,47582,69897959
15632427,23892-3,238913,79590,22600,41326531
16642527,97838-2,97847,36730,06970,12755102
17662529,45731-4,45737,36733,03815,55612245
18702732,41517-5,41520,510222,098340,4132653
19723133,8941-2,894110,795938,190169,8418367
20753336,1125-3,112527,938870,5300128,984694
21763336,85196-3,852027,938883,4971152,69898
22804239,809822,1902204,0816146,3020267,556122
23824141,28875-0,2888176,5102184,2662336,984694
24874444,98608-0,9861265,2245298,3149545,556122
25905347,204475,7955639,3673379,8675694,69898
26935549,422875,5771744,5102471,2626861,841837
27955750,90186,0982857,6531537,6608983,270408
28996253,859668,14031175,5102683,58071250,12755
Сумма17827760,006715,71436108,087911170,4286
Среднее63,6428627,71429
b10,739465
b0-19,3474

F = = 261,36.

По статистическим таблицам F-распределения F0,05;1;26 = 4,22. Так как
F > F0,05;1;26, то уравнение регрессии значимо.

2-й способ. Учитывая, что b1 = 0,739, = 11170,43
(табл. 4), = =23,37 (табл. 4), по формуле (26)

t = = 16,17.

По таблице t-распределения t0,95;26 = 2,06. Так как t > t0,95;26, то коэффициент регрессии b1, а значит, и уравнение парной линейной регрессии значимо.

Найдем коэффициент детерминации и поясним его смысл. Ранее было получено QR = 6108,09, Q = 6715,71. По формуле (28) = 0,9095 (или R2 = r2 = 0,9542 = 0,9095). Это означает, что изменения зависимой переменной у – дневная выработка – на 90% объясняется вариацией объясняющей переменной х – уровнем механизации.

Найдем 95%-ные доверительные интервалы для индивидуального значения прибыли при уровне механизации равной 65%.

Ранее было получено уравнение регрессии

= -19,37 + 0,74x.

Чтобы построить доверительный интервал для индивидуального значения , найдем точечное значение признака = -19,37 + 0,74∙65 = 28,718.

Затем найдем дисперсию оценки:

=23,370= 0,839

и = 0,916.

Далее искомый доверительный интервал получим по (29):

28,718 – 2,06∙0,916 ££ 28,718 + 2,06∙0,916

26,832 ££ 30,604

Таким образом, дневная выработка при уровне механизации равной 65% с надежностью 0,95 находится в пределах от 26,832 ед. до
30,604 ед.

Найдем 95%-ный доверительный интервал для параметра b1.

По формуле (30)

0,74 – 2,06£b1£ 0,74 + 2,06,

0,645 £b1£ 0,834,

т.е. с надежностью 0,95 при изменении уровня механизации x на 1% дневная выработка y будет изменяться на величину, заключенную в интервале от 0,645 до 0,834 (ед.).

Исследуем полученную модель на наличие гетероскедастичности.

Тест Голфреда-Квандта.

Упорядочим п наблюдений по мере возрастания переменной х. Исключим из рассмотрения С = 6 центральных наблюдений (условие
(п-С)/2 = (28 – 6)/2 = 11 > р = 1 выполняется). Разделим совокупность из (п-С) = (28 – 6) = 22 наблюдений на две группы (соответственно с малыми и большими значениями фактора х по 11 наблюдений) и определим по каждой из групп уравнения регрессии. Для первой группы оно составит = -3,70 + 0,39x. Для второй группы: = 1,16 + 53,11x. Определим остаточные суммы квадратов для первой (S1) и второй (S2) групп. Промежуточные расчеты занесем в табл. 5.

NXYYрег = -3,70 + 0,39Хe=Y-Yрегe^2
11552,152,858,1225
22465,660,340,1156
342612,68-6,6844,6224
446914,24-5,2427,4576
5481515,02-0,020,0004
6481415,02-1,021,0404
7501715,81,21,44
8521716,580,420,1764
9532216,975,0325,3009
10542117,363,6413,2496
S1121,5258
NXYYрег = -53,11 + 1,16Хe=Y-Yрегe^2
17662523,451,552,4025
18702728,09-1,091,1881
19723130,410,590,3481
20753333,89-0,890,7921
21763335,05-2,054,2025
22804239,692,315,3361
23824142,01-1,011,0201
24874447,81-3,8114,5161
25905351,291,712,9241
26935554,770,230,0529
27955757,09-0,090,0081
28996261,730,270,0729
S232,8636

Тест ранговой корреляции Спирмэна

Проранжируем значения хi и абсолютные величины остатков в порядке возрастания, расчеты занесем в табл. 6.

Найдем коэффициент ранговой корреляции Спирмэна:

= 0,108.

Таблица 6

NXEiРасчет ранговой корреляции
Ранг ХРанг |Ei|dd^2
11513,27128-27729
2247,61226-24576
342-5,71323-20400
446-5,67422-18324
548-1,1556-11
648-2,1569-39
750-0,6373416
852-2,118800
9532,15910-11
10540,41102864
11550,67114749
1260-2,03127525
1361-2,77131300
1462-2,51141224
1563-3,251517-24
1664-2,99161511
1766-4,471719-24
1870-5,431820-24
1972-2,911914525
2075-3,132016416
2176-3,87211839
22802,17221111121
2382-0,3123122484
2487-1,0124519361
25905,77252411
26935,552621525
27956,07272524
28998,11282711
Сумма0,003258

Найдем t-критерий для ранговой корреляции:

= 0,556.

Сравним полученное значение tr с табличным значением
t0,95; 26 = 2,06. Так как tr < t0,95; 26, то на уровне значимости 5% принимается гипотеза об отсутствии гетероскедастичности.

Использование теста Уайта рассмотрим во второй части методических указаний.

Тест Парка Тест предполагает, что дисперсия остатков связана со значениями факторов функций ln e2 = а + blnх + и. Проверяется значимость коэффициента регрессии b по t-критерию Стьюдента. Если коэффициент регрессии для уравнения lne2 окажется статистически значимым, то, следовательно, существует зависимость lne2 от lnх, т.е. имеет место гетероскедастичность остатков.

Чтобы построить зависимость ln e2 = а + blnх введем замены:
ln e2 = у, lnх = z. Построим линейную регрессию у = а + bz. Для этого воспользуемся пакетом анализа MicrosoftExcel (Сервис + Анализ данных + + Регрессия). В результате получим следующую модель:

ln e2 = 5,635 - 0,901 lnх.

Проверка уравнения на значимость показывает: R2 = 0,039; F = 1,056; ta = 1,565 и tb = 1,028. По тесту Парка зависимость дисперсии остатков от х проявляется ненадежно: все параметры статистически нее значимы, R2 очень низкий, t-критерий и F-статистика меньше табличных значений (t0,95;26 = 2,06; F0,05;1;26 = 4,23). Тест Парка показал отсутствие гетероскедастичности.

Тест Гейзера

Тест оценивает зависимость абсолютных значений остатков от значений фактора х в виде функции: |e| = a + bxc, где с задается определенным числом степени. Для нашего примера используем значения с равные -2;-1; -0,5; 0,5; 1;2.

Для построения моделей регрессий воспользуемся пакетом анализа Microsoft Excel. Получили следующие результаты:

при с = -2 |e| = 2,62 + 2327,52x-2R2 = 0,460; F = 22,14

(5,61) (4,71)

при с = -1 |e| = 0,87 + 153,09x-1R2 = 0,360; F = 14,61

(1,01) (3,82)

при с = -0,5 |e| = -2,40 + 46,10x-0,5R2 = 0,271; F = 9,65

(1,19) (3,11)

при с = 0,5 |e| = 8,58 - 0,62x0,5R2 = 0,090; F = 2,56

(2,76) (1,60)

при с = 1 |e| = 5,39 - 0,03xR2 = 0,035; F = 0,945

(2,97) (0,97)

Из теста Гейзера следует, что абсолютная величина остатков достаточно сильно зависит от х-2.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно