Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Потенциал силы тяжести

Тип Реферат
Предмет Математика
Просмотров
1292
Размер файла
56 б
Поделиться

Ознакомительный фрагмент работы:

Потенциал силы тяжести

В. В. Орлёнок, доктор геолого-минералогических наук

Сила тяжести g, определяемая по формуле (IV.5), является векторной величиной. Для решения многих задач гравиметрии удобно пользоваться скалярной величиной V, определяемой из выражения

. (IV.11)

Сила тяжести связана с величиной V соотношением

, (IV.12)

т. е. является проекцией по направлению действия силы. Функция, удовлетворяющая условиям (IV.12) и (IV.11), называется потенциалом силы тяжести.

Полный потенциал силы тяжести W, очевидно, будет представлять сумму скалярных величин V и U, характеризующих потенциалы притяжения и центробежной силы:

;

; (IV.13)

.

Выражение

W = const (IV.14)

определяет эквипотенциальную поверхность, или поверхность равного потенциала, в каждой точке которой величина силы тяжести направлена по нормали: .

Эта эквипотенциальная поверхность в условиях вращающейся Земли совпадает с уровнем моря и по форме близка к сфероиду вращения. Она носит название геоида. Отклонение поверхности геоида от поверхности сфероида будет характеризовать ундуляцию геоида.

Нетрудно показать, что вторые производные потенциала тяготения по осям координат для точек, расположенных вне масс, равны нулю, т.е.

Ñ2V = 0, (IV.15)

где , а потенциала силы тяжести – сумме вторых производных потенциала центробежной силы:

Ñ2 W = 2w2. (IV.16)

Уравнение (IV.15) называется уравнением Лапласа.

Для точек, расположенных внутри сферических масс, имеем

.

Дифференцируя дважды, получим:

;

Ñ2V = -4pGr; (IV.17)

Ñ2W = -4pGr+2w2

Уравнение (IV.17) называется уравнением Пуассона. Уравнение Лапласа представляет собой частный случай уравнения Пуассона, когда r = 0.

Функция, удовлетворяющая уравнению Лапласа, называется гармонической. Уравнение Пуассона показывает, что вторые производные потенциала тяготения при прохождении притягиваемой точки меняются скачком на величину плотности r.

Аномалии силы тяжести

Представляя фигуру Земли эллипсоидом вращения и вводя понятие геоида, мы предполагаем, что масса Земли сложена однородным по плотности веществом. При этом изменение силы тяжести на поверхности Земли должно быть обусловлено лишь изменением по широте потенциала центробежной силы и различием в экваториальном и полярном радиусах. Однако в реальных условиях характер изменения силы тяжести отличается от теоретического нормального распределения, рассчитанного для поверхности однородного геоида, или эллипсоида. Такого рода отклонения силы тяжести от нормальной величины вызваны неоднородным распределением плотностей в теле Земли и особенно в верхних ее частях.

Разность между наблюденным ускорением силы тяжести g и нормальной величиной g0, полученной по международной формуле (IV.9), называется аномалией силы тяжести Dg:

Dg = g – g0. (IV.18)

Аномалии силы тяжести создаются главным образом неоднородным распределением плотностей в земной коре и верхней мантии. Однако, чтобы выявить эту неоднородность, простого вычитания из наблюденной силы тяжести нормальной составляющей оказывается недостаточно. Дело в том, что величина силы тяжести зависит от целого ряда факторов, и в первую очередь от географической широты и высоты места (относительно уровня моря), рельефа окружающей местности, характера плотностных неоднородностей в верхних слоях Земли под точкой наблюдения и др. Для исключения влияния этих факторов в наблюденное значение Dg вводят поправки или, как их еще называют, редукции. Название редукции определяет название аномалии силы тяжести.

Поправка за высоту. Аномалия в свободном воздухе (аномалия Фая). При проведении гравиметрических наблюдений на земной поверхности точки наблюдения, как правило, располагаются выше уровня моря. Для того чтобы наблюденные значения силы тяжести могли быть сопоставимы между собой, их приводят к уровню моря, вводя поправку «за высоту». Смысл этой поправки заключается в следующем.

Сила тяжести на уровне моря определяется из известного нам уже выражения

. (IV.19)

Если же точка наблюдения О расположена на некоторой высоте Н от уровня моря, то притяжение ее определится выражением (рис. 19):

. (IV.20)

Сила тяжести изменится на величину

.

Разлагая выражение по биному Ньютона и ограничиваясь первым членом разложения, имеем

.

Подставляя вместо g среднее для всей Земли значение gср= 980,6 гал, Rcp = 6371,2 км, получим

dg1 = 0,3086Н, (IV.21)

где Н, м.

Это нормальный вертикальный градиент силы тяжести для невращающейся Земли. Точное выражение этого градиента получим с учетом потенциала центробежного ускорения 2w2H, получаемого из уравнения Лапласа DW = 2w2 в новой системе координат. Например, для Н = = 1000 м 2w2Н = 1,058×10-8×10-5 =1 мгал. Важность учета этой поправки очевидна, особенно для сильнопересеченной местности, т.е. в общем случае

dg = 0,3086 Н + 2w2Н (IV.22)

Формула (IV.22) называется поправкой за высоту, или в свободном воздухе, и характеризует нормальное изменение силы тяжести с высотой. С учетом поправки за высоту можно вычислить аномалию силы тяжести в свободном воздухе как разность наблюденного и редуцированного к точке наблюдения нормального значения силы тяжести, вычисленного по формуле Гельмерта или Кассиниса:

Dg1 = g – g0 + 0,3086Н. (IV.23)

Получаемая по формуле (IV.23) аномалия Dg называется аномалией в свободном воздухе, или аномалией Фая.

Следует отметить, что при введении поправки за свободный воздух влияние масс (плотностных неоднородностей), лежащих между уровнем точки наблюдения и уровнем моря, не учитывается. Однако на самом деле между уровнем наблюдения и уровнем моря залегают породы, обладающие определенной плотностью. Наличие таких пород увеличивает наблюденное значение силы тяжести, и чем выше точка отстоит от уровня моря, тем больше их влияние. Этот эффект наиболее ощутим при наблюдениях в горной местности. На равнине редукция за высоту будет постоянна.

Таким образом, аномалия в свободном воздухе отражает суммарное влияние плотностной неоднородности горных пород и влияние дополнительных масс, вызванное рельефом. Поэтому в условиях расчлененного рельефа с большим перепадом высот (порядка нескольких сотен метров) аномалия в свободном воздухе в значительной степени будет отражать топографию, в то время как гравитационный эффект плотностных неоднородностей верхних этажей геологического разреза Земли будет замаскирован. Исключение, как уже отмечалось, составляют равнинные участки с небольшими перепадами рельефа. В этих условиях аномалия в свободном воздухе может быть использована для изучения глубинной структуры.

Поправка за притяжение промежуточного слоя. Аномалия Буге. Для определения влияния плотностных неоднородностей между уровнем наблюдения и уровнем моря вычислим силу притяжения диска бесконечного радиуса и плотности r на точку Р, расположенную на некоторой высоте h от его центра (рис. 20). Как видно из рисунка, элемент массы бесконечно малого объема высотой dh равен

,

R2 = h2 + r2,

.

Откуда проекция g на ось z будет равна

. (IV.24)

Чтобы найти gz по всей массе диска, нужно проинтегрировать (IV.24):

.

В итоге получаем

,

при R ®¥ и dh ® H – полной высоте диска получаем:

. (IV.25)

Выражение (IV.25) показывает, что сила притяжения бесконечного слоя на точку не зависит от расстояния l до точки, а зависит от массы этого слоя (rН). Подставляя в (IV.25) значение 2p и G = = 6,6732×10‑8 см3×г-1×с-2, получим

gz = 0,0418rH. (IV.26)

Это и есть редукция Буге, характеризующая притяжение слоя Н, имеющего плотность r. Обычно плотность берут равной средней плотности земной коры r = 2,67 г/см3. Отклонения от этого среднего в реальных разрезах позволяют выявить области с аномальными плотностями.

Величина

(IV.27)

называется аномалией Буге. При измерениях на море вследствие Н = 0 аномалия приобретает вид

. (IV.28)

Аномальное гравитационное поле Земли отражает суммарное действие гравитирующих масс, расположенных на различных глубинах в земной коре и верхней мантии. Поэтому для однозначного решения вопроса о природе аномалий необходимо разделять гравитационные поля на региональные, создаваемые глубокозалегающими массами, и локальные, вызванные местными геологическими неоднородностями разреза. Для исключения высокочастотного локального фона пользуются различными методами пересчета аномального поля в верхнее полупространство. В результате таких операций мелкие неоднородности поля сглаживаются и остается низкочастотный региональный фон, обусловленный действием крупных или глубокозалегающих гравитирующих масс.

Другая задача интерпретации заключается в исключении регионального фона и выделении локальных аномалий, связанных с неглубоко залегающими массами. Методы решения этих задач разработаны на уровне полуколичественных определений.

Несмотря на сложную структуру аномального гравитационного поля, наблюдаемого как на суше, так и на море, отдельные участки кривой Dg могут быть использованы для определения параметров гравитирующей массы. Иногда, меняя форму и глубину залегания гравитирующей массы, рассчитывают создаваемую при этом аномалию. Сравнивая ее с наблюденной аномалией, методом подбора определяют основные параметры возмущающей массы в реальных условиях (см. гл. V).

Существование гравитационных аномалий над океаническими котловинами и над континентами обусловлено плотностными неоднородностями горных пород. Чем значительнее эти неоднородности, тем лучше они отражаются в аномальном гравитационном поле. Большую роль играют также размеры и форма аномалиеобразующего тела.

Для оценки параметров геологических объектов и расчетов создаваемого ими аномального поля силы тяжести вводится понятие избыточной плотности горных пород Dr:

(IV.29)

Избыточной плотностью называется разность плотности вмещающих пород r1 и плотности аномалеобразуюшего тела r2. Знание плотности важно при геологическом истолковании гравитационных аномалий. Более детально этот вопрос будет рассмотрен в главе V.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно