Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Некоторые свойства многогранника. Задачи о P-медиане

Тип Реферат
Предмет Математика
Просмотров
981
Размер файла
43 б
Поделиться

Ознакомительный фрагмент работы:

Некоторые свойства многогранника. Задачи о P-медиане

Г.Г. Забудский, Институт информационных технологий и прикладной математики СО РАН

1. Постановка задачи и определения

Задачи оптимального размещения объектов имеют много практических приложений. Описываются различные постановки таких задач [1-8]. В данной статье рассматривается известная NP-трудная задача оптимального размещения на графе - задача о p-медиане [1,7-8]. Для ее исследования здесь применяется подход, развиваемый в работах А.А. Колоколова и других [2,4-7,9] для анализа и решения задач целочисленного программирования, основанный на разбиении допустимой области соответствующей непрерывной задачи. В данной работе рассматривается L- разбиение.

Задача о p-медиане сводится к простейшей задаче размещения (ПЗР). Сводимость не гарантирует сохранения некоторых свойств. Например, многогранник ПЗР - квазицелочисленный, а многогранник задачи о p- медиане в общем случае является только связноцелочисленным (квазицелочисленным при p = 1, n-1, где n - число вершин графа) [1].

В работе [2] доказано, что многогранник ПЗР имеет альтернирующую L-структуру. В данной статье показано, что многогранник задачи о p-медиане также имеет альтернирующую L -структуру.

Рассматривается целочисленная модель задачи о p- медиане:

(1)

где n - количество вершин графа; dij - кратчайшее расстояние между i-й и j- й вершинами графа; p- количество размещаемых объектов. Диагональными будем называть элементы вектора x = (x11,x12,...,xnn) с одинаковыми индексами, а медианными - диагональные, принимающие значение 1. Переменная xij = 1, если вершина j"прикреплена" к вершине i. Условия (4) гарантируют прикрепление только к медианным вершинам. Если условия (5) заменить линейными неравенствами

(2)

то ограничения (2)-(4),(6) задают многогранник в пространстве размерности n2. Обозначим его через Mp.

Введем определение L-разбиения . Пусть Zk- множество всех k-мерных целочисленных векторов. Тогда L-разбиение непустого множества Rk определим следующим образом:

1) каждая точка zZk образует отдельный класс;

2) нецелочисленные точки x и y эквивалентны, если (x) = (y) и [xi=yi, i =1,...,(x)-1, [x(x)] = [x(x)] , где(x) - номер первой дробной, [a] - наибольшее целое число, не превосходящее a.

В выпуклых множествах с альтернирующим L-разбиением дробныеи целочисленные классы чередуются. В работе [9] предложен критерий альтернируемости L-разбиения:выпуклое замкнутое множество Rk имеет альтернирующее разбиение тогда и только тогда, когда для любого дробного L-класса V существуют целочисленные точки z1,z2    Zk ( называемые окаймляющими) такие, что для любого x  V z1j = z2j = xj, j =1,...,(x)-1; z2j = [xj]; j = (x); z1j = ]xj[; j = (x),

где ]a[ - верхняя целая часть числа a. Ясно, что знак лексикографического сравнения.

2. Структура L-разбиения

Исследуем структуру L-разбиения многогранника Mp.

ТЕОРЕМА. Для произвольного упорядочения переменных многогранник Mp имеет альтернирующую L-структуру .

Доказательство. Воспользуемся критерием альтернируемости L-структуры. Возьмем произвольный дробный xMp. Обозначим через  произвольную перестановку n2 индексов вектора x, т.е. пар чисел от 1 до n. Тогда (i,j) - номер пары (i,j) в перестановке  .Рассмотрим два случая.

1. Пусть первая дробная в векторе x  Mp - диагональная, т.е. (x) = (i,i) и Отметим, что qZ, qp, а тогда q+1 p. Построим вектор z1  Mp Zn2, и . Возможны варианты.

1.1. q+1 = p. Для каждого j такого, что найдется kj такой, что 0xkj1 построим множество Jj ={k|xkk = 1}. Покажем, что Jj.

Действительно, пусть нашелся j, для которого Jj=, тогда а так как xkjxkk для любых k и j, имеем а из условия получаем 0 xij1 и тогда iJj, что противоречит тому, что Jj=.

Вектор z1 строим следующим образом:

Нетрудно проверить, что .

1.2 q+1p. Построим множество JM = {k|xkk = 1}{i}.

Ясно, что |JM| p, так как а 0xii1.

Если |JM| p, то, как рассмотрено выше, строим множества Jj и вектор z1.

Если |JM| p тогда строим множества: D = {ki | 0xkk1}, VN = VM = . Выберем произвольно jD, тогда если найдется такое k, что 0xjk1 и xsk = 0 для всех sVN, то полагаем VM=VM{j}, иначе VN=VN{j}. Вычеркиваем j из D и выбираем следующий элемент из D. Процедура построения множеств VN и VM заканчивается, когда D =. Отметим некоторые свойства множеств VN и VM.

Во-первых, | VM |  p-| JM |. Действительно, элемент j включается в множество VM в том случае, если найдется такой элемент k, что 0xjk1 и xsk = 0 для всех sVN. Так как и xtkxtt, получаем, что ,откуда .

Учитывая, что имеем а тогда |VM| p - |JM|.

Во-вторых, |VN| (p- |JM|)-|VM|. Это следует из того, что |VN|+|VM| = |D|, а |D| = p - |JM| +1 .

В случае, если |VM| p- |JM|, выбираем произвольно (p-|JM|)- |VM| элементов из множества VN и включаем их в множество VM.

Далее для каждого элемента j, такого, что 0xkj1 kj строим множество Jj = {k |k  JMVM }

Покажем, что Jj для каждого рассматриваемого j. Действительно, если найдется j, для которого Jj=, тогда рассмотрим множество Dj = {k | 0xkj1}

Получаем, что 0xkk1 для всех kDj, откуда следует, что kVN для всех kDj, т.е. DjVN. Отметим, что элементы множества Dj поочередно включались в множество VN, тогда перед рассмотрением последнего элемента rDj выполнялось условие 0xrj, xsj = 0 для всех sVN, но тогда rVM и, следовательно, Jj. Другими словами, не может быть ситуации, когда все дробные в строке из множества VN. Вектор z1 строится следующим образом:

Для того чтобы закончить рассмотрение случая (x) = (i,i), необходимо показать, как строится вектор z2Mp такой, что . В этом случае аналогично строятся множества JM,VN,VM,Jj, Dj с тем изменением, что построение множества VN начинается не с пустого множества, а вначале в него включается элемент {i}. В множество Jj его не включаем. Так как при доказательстве условия Jj мы не пользовались тем, что iJM, оно справедливо и для рассматриваемого случая. Вектор z2 строится аналогично, как расcмотрено выше, за исключением того, что z2ii = 0.

2. Рассмотрим случай, когда (x) = (i,t), it. В отличие от рассматриваемого выше случая при построении вектора z1 не надо строить множество Jt, а положить z1it = 1. Если 0 xii1, то i включаем в VM. При построении вектора z2 не включаем i в множество Jt, если таковое будет строиться.

Теорема доказана.

Отметим, что при построении векторов z1 и z2 мы только некоторым образом округляли дробные компоненты, не меняя значения целочисленных компонент.

СЛЕДСТВИЕ. Для любого дробного решения задачи (1)-(5) подходящим округлением дробных компонент можно построить допустимое решение. Причем по крайней мере одну из дробных компонент можно округлять произвольно.

Доказанное свойство альтернируемости может эффективно использоваться при разработке алгоритмов решения задачи о p-медиане, например, как в [7].

Список литературы

Емеличев В.А., Ковалев М.М., Кравцов М.К. Многогранники, графы, оптимизация. М.: Наука,1981.-344 с.

Заблоцкая О.А. L-разбиение многогранника задачи стандартизации // Моделирование и оптимизация систем сложной структуры. Омск: ОмГУ, 1987. С.151-154.

Забудский Г.Г. Об оценках стоимости связывающей сети в некоторых задачах размещения // Дискретная оптимизация и анализ сложных систем. Новосибирск: ВЦ СО АН СССР, 1989. С. 10 - 25.

Забудский Г.Г. О целочисленной постановке одной задачи размещения объектов на линии // Управляемые системы. Новосибирск, 1990. Т. 30. С.35-45.

Забудский Г.Г. Задачи оптимального размещения взаимосвязанных объектов на линии // Методы решения и анализа задач дискретной оптимизации. Омск: ОмГУ, 1992. С. 5 - 24.

Zabudsky G.G. On the One-Dimensional Space Allocation Problem with Minimal Admissible Distances // Optimization-Based Computer-Aided Modelling and Design.-Prague, Czech Republic: IITA CR. 1995. P. 448-452.

Колоколов А.А., Леванова Т.В. Алгоритмы декомпозиции перебора L-классов для решения некоторых задач размещения // Вест. Омск. ун-та. 1997. N1. С. 21-23.

Кристофидес Н. Теория графов. Алгоритмический подход. М.: Мир,1978.-432 с.

Колоколов А.А. Выпуклые множества с альтернирующим L-разбиением // Моделирование и оптимизация систем сложной структуры. Омск: ОмГУ, 1987. С.144-150.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
152761
рейтинг
icon
3184
работ сдано
icon
1378
отзывов
avatar
Математика
Физика
История
icon
148421
рейтинг
icon
5975
работ сдано
icon
2702
отзывов
avatar
Химия
Экономика
Биология
icon
105024
рейтинг
icon
2093
работ сдано
icon
1306
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
59 295 оценок star star star star star
среднее 4.9 из 5
Московский технологический институт
Работа выполнена в полном объёме в кратчайшие сроки. Благодарен исполнителю.
star star star star star
РУДН
Спасибо за работы. Результат узнаю только в июне, тк учусь на заочном отделении. Как узнаю...
star star star star star
РАНХиГС
Работа была хорошо, все замечания исправлены и при этом работа была выполнена досрочно. Со...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачу

Решение задач, Менеджмент

Срок сдачи к 5 апр.

только что

Решить задачу максимально быстро

Решение задач, Органическая химия

Срок сдачи к 18 мар.

только что

Написание реферата по теме

Реферат, Маркетинг

Срок сдачи к 23 мар.

1 минуту назад

выполнить расчет задачи 1,2тс

Решение задач, транспорт, физика

Срок сдачи к 28 мар.

1 минуту назад
2 минуты назад

Спец курс

Контрольная, проектирование зданий и сооружений

Срок сдачи к 18 апр.

2 минуты назад

Решить задание

Решение задач, Менеджмент

Срок сдачи к 5 апр.

2 минуты назад

Ответить на вопрос к лабораторной работе по трансформаторам

Лабораторная, Электрические машины

Срок сдачи к 22 мар.

2 минуты назад

Выполнить курсовую работу качественно и в срок.

Курсовая, Теория государства и права

Срок сдачи к 28 мар.

2 минуты назад

Написать курсовую основываясь на имеющимся оглавлении

Курсовая, безопасность жизнедеятельности

Срок сдачи к 26 мар.

2 минуты назад

Решить задачи

Решение задач, Юриспруденция

Срок сдачи к 18 мар.

3 минуты назад

сделать решение в ворде

Решение задач, Автоматизация технологических процессов и производств

Срок сдачи к 30 мар.

3 минуты назад

Курсовая с расчетами и чертежами

Курсовая, Архитектура

Срок сдачи к 10 апр.

3 минуты назад

Сделать презентацию

Презентация, Экономика

Срок сдачи к 18 мар.

4 минуты назад

решить задачи по физике нгд

Решение задач, Физика

Срок сдачи к 19 мар.

4 минуты назад

Большой текст

Контрольная, Организация деятельностии аптеки и ее структурных подразделений

Срок сдачи к 19 мар.

4 минуты назад

дипломная работа (презентация и печатный...

Диплом, медицина

Срок сдачи к 16 мая

4 минуты назад

решить задачу 1

Решение задач, автомобили и автомобильное хозяйство

Срок сдачи к 31 мар.

5 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно