это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Что общее может быть между числами Фибоначчи и пифагоровыми тройками? Что может связывать числа, которые образуют последовательность, начинающуюся двумя единицами, остальные члены которой получаются сложением двух предыдущих членов, с числами, квадрат одного из которых равен сумме квадратов двух других? Могут ли они вообще быть связаны? Это мы сейчас увидим. Связь довольно интересная.
Прежде всего, давайте определим математические понятия. Хотя последовательность Фибоначчи и пифагоровы тройки хорошо известны, приведем их определения. Последовательность Фибоначчи определяется следующим образом:
.
Пифагорова тройка представляет собой набор из трех натуральных чисел таких, что
.
Вот какая интересная связь имеется между ними. Возьмем четыре последовательных числа последовательности Фибоначчи. Пусть это будут числа . Теперь выполним следующие действия:
1. Умножим первое число на четвертое, самое большое на самое маленькое, и обозначим их произведение через : .
2. Удвоим произведение остальных двух чисел и обозначим его через : .
3. Перемножим числа, стоящие на нечетных местах (считая слева) и прибавим к этому произведению произведение остальных двух чисел. Обозначим полученное число через ^ .
Получим пифагорову тройку .
Разве это не красиво? И доказательство этого удивительно просто!
Давайте докажем, что действительно пифагорова тройка. Так как — четыре последовательных числа последовательности Фибоначчи, то . Мы можем выразить все через и и записать четверку чисел следующим образом:
.
Давайте посмотрим, чему равны и :
,
,
.
Таким образом, наша тройка чисел имеет вид , где числа и являются последовательными членами последовательности Фибоначчи и есть по крайней мере одно число в этой последовательности, которое меньше, чем каждое из них.
Неужели эти числа образуют пифагорову тройку? В этом можно легко убедиться. В самом деле, сумма квадратов первых двух чисел равна квадрату третьего:
,
.
Сложим эти два числа:
.
Кроме того,
.
Замечательно, не правда ли?
Давайте рассмотрим несколько примеров.
1) Возьмем числа . Имеем
,
,
.
И вот
,
.
2) Другой пример, с несколько большими числами. Возьмем числа . Тогда
,
,
и
,
.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!