Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Построение оптимальной последовательности операций в коммерческой деятельности

Тип Реферат
Предмет Математика
Просмотров
284
Размер файла
621 б
Поделиться

Ознакомительный фрагмент работы:

Построение оптимальной последовательности операций в коммерческой деятельности

ФГОУ СПО «Волгоградский государственный экономико-технический колледж»

Кафедра информационных технологий

КУРСОВОЙ ПРОЕКТ

по дисциплине: Математические методы

на тему:

Построение оптимальной последовательности операций в коммерческой деятельности

Пояснительная записка

ВГЭТК. 401-П. 13. КП.13. ПЗ

Студента: Кролькова Ильи Владимировича

Шифр К-1205

Группа 401-П

Руководитель: Еловенко Н. А.

Волгоград, 2011


Содержание

Введение. 3

1 Теоретическая часть. 3

1.1 Принцип оптимальности и математическое описание динамического процесса управления. 3

1.2 Построение сетевой модели последовательности операций в коммерческой деятельности и ее решение. 3

2 Практическая часть. 3

2.1 Решение задачи с помощью математического аппарата. 3

2.2 Решение задачи средствами прикладных программ. 3

2.3 Автоматизация решения задачи. 3

Заключение. 3

Библиографический список. 3

Приложение А Блок-схема алгоритма. 3

Приложение Б Листинг расчета в VBA.. 3

Введение

Коммерческая деятельность в том или ином виде сводится к решению таких задач: как распорядиться имеющимися ресурсами для достижения наибольшей выгоды или какое следует предпринять действие для получения возможно лучшего финансового результата. Однако стало возможным часть этого искусства сделать наукой, базирующейся на математических методах.

Необходимость использования таких методов диктуется тем, что последствия принимаемых решений могут касаться большого числа людей и быть связаны с огромными затратами. Поэтому степень ответственности за принимаемые решения значительно возрастает. Перевод реального мира коммерческой деятельности на язык математики позволит получить наиболее точное представление о его существенных свойствах и предсказать будущие события.

Целью работы является создание программы позволяющей построить оптимальную последовательность операций в коммерческой деятельности.

Для достижения поставленной цели необходимо решить следующие задачи:

− изучить предметную область решаемой проблемы;

− разработать этапы решения задачи;

− рассмотреть принципы использования прикладных программ для расчета основных характеристик по теме задачи;

− разработать приложение, позволяющее автоматизировать процесс решения задачи.

Объект исследования – построение сетевой модели последовательности операций .

Предмет исследования – построение оптимальной последовательности операций в коммерческой деятельности.


1 Теоретическая часть

1.1 Принцип оптимальности и математическое описание динамического процесса управления

В основе метода ДП лежит принцип оптимальности, впервые сформулированный в 1953 г. американским математиком Р.Э. Беллманом: каково бы ни было состояние системы в результате какого-либо числа шагов, на ближайшем шаге нужно выбирать управление так, чтобы оно в совокупности с оптимальным управлением на всех последующих шагах приводило к оптимальному выигрышу на всех оставшихся шагах, включая выигрыш на данном шаге. При решении задачи на каждом шаге выбирается управление, которое приводит к оптимальному выигрышу. Если считать все шаги независимыми, тогда оптимальным управлением будет то управление, которое обеспечит максимальный выигрыш на каждом шаге. Однако, например, при покупке новой техники взамен устаревшей на ее приобретение затрачиваются определенные средства, поэтому доход от ее эксплуатации в начале может быть небольшой, а в следующие годы новая техника будет приносить больший доход. И наоборот, если принято решение оставить старую технику для получения дохода в текущем году, то в дальнейшем это приведет к значительным убыткам. Этот пример демонстрирует следующий факт: в многошаговых процессах управление на каждом конкретном шаге надо выбирать с учетом его будущих воздействий на весь процесс.

Кроме того, при выборе управления на данном шаге следует учитывать возможные варианты состояния предыдущего шага. Например, при определении количества средств, вкладываемых в предприятие в i-м году, необходимо знать, сколько средств осталось в наличии к этому году и какой доход получен в предыдущем -м году. Таким образом, при выборе шагового управления необходимо учитывать следующие требования:

1) возможные исходы предыдущего шага;

2) влияние управления на все оставшиеся до конца процесса шаги (п — к).

В задачах динамического программирования первое требование учитывают, делая на каждом шаге условные предположения о возможных вариантах окончания предьщущего шага и проводя для каждого из вариантов условную оптимизацию. Выполнение второго требования обеспечивается проведением безусловной оптимизации в обратном порядке.

Условная оптимизация. На первом этапе решения задачи, называемом условной оптимизацией, определяются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем, n-м, шаге оптимальное управление определяется функцией Беллмана: в соответствии с которой максимум выбирается из всех возможных значений причем.

Дальнейшие вычисления проводятся согласно рекуррентному соотношению, связывающему функцию Беллмана на каждом шаге с этой же функцией, но вычисленной на предыдущем шаге. В общем виде это соотношение имеет вид

Этот максимум (или минимум) определяется по всем возможным для k и Sзначениям переменной управлениях

Безусловная оптимизация. После того как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый, осуществляется второй этап решения задачи, называемый безусловной оптимизацией, проводимой в обратном порядке.

Пользуясь тем, что на первом шаге (k = 1) состояние системы известно - это ее начальное состояние можно найти оптимальный результат за все п шагов и оптимальное управление на первом шаге , которое этот результат доставляет. После применения этого управления система перейдет в другое состояние зная которое, можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге и так далее до последнего п-го шага.

Вычислительную схему динамического программирования можно строить на сетевых моделях, а также по алгоритмам прямой прогонки (от начала) и обратной прогонки (от конца к началу). Рассмотрим примеры решения различных по своей природе задач, содержание которых требует выбора переменных состояния и управления.

1.2 Построение сетевой модели последовательности операций в коммерческой деятельности и ее решение

Пусть на оптовую базу прибыло п машин с товаром для разгрузки и т машин для загрузки товаров, направляемых в магазины. Материально ответственное лицо оптовой базы осуществляет оформление документов по операциям разгрузки или загрузки для одной машины, а затем переходит к обслуживанию другой машины. Издержки от операций обусловлены простоем транс порта, типом операции (прием или отправка товара) и не зависят от конкретной машины. Необходимо спланировать последовательность операций обоих видов таким образом, чтобы, суммарные издержки по приему и отправке товаров для всех машин были минимальными.

Из условия следует, что состояние экономической системы характеризуется двумя параметрами: количеством принятых и оформленных машин по разгрузке товара и количеством машин отправленных с товаром в магазины. Поэтому решение будем искать на плоскостиXOY, ограниченной прямоугольником, который является областью допустимых состояний системы. Если по оси X отложить число п разгруженных машин, а по оси Y— число т загруженных товаром машин, то можно построить на плоскости граф состояний процесса, в котором каждая вершина характеризует состояние операции приема и отгрузки товара на оптовой базе. Ребра этого графа означают выполнение работы по приему или отправке товара на очередной машине. Каждому ребру можно сопоставить издержки, связанные с выполнением операции по разгрузке или загрузке машины.

Пример. Пусть n = 6, m = 4. Известны затраты по выполнению каждой операции, которые показаны на ребрах графа (рис. 5.7.1).

Точка определяет начало процесса, а — конечное состояние, соответствующее приему и отправке всех машин. Оптимизацию процесса будем производить с конечного состояния —. Весь процесс разобьем на шаги, их количество Каждый шаг представляет собой сечение графа состояний, проходящее через вершины (на рис. 1.2.1 сечения показаны косыми линиями).

Рис 1.2.1 Графическая схема связи операций

I этап. Условная оптимизация

1-й шаг: k = 1. На первом шаге с задаваемым сечением, из состояний и возможен только один вариант перехода вконечное состояние . Поэтому в вершинах и записываемсоответственно издержки 8 и 11. Ребра и обозначаемстрелкой, направленной в вершину -, как показано на рис. 1.2.2.

Рис 1.2.2 Фрагмент связи операции (шаг 1)

2-й шаг: k = 2. Второй шаг оптимизации задается сечением по вершинам. Из состояний и , возможен единственный переход в вершины , и соответственно, поэтому в вершинах и записываем суммарные издержки 17 и 22 на первых двух шагах перехода в конечное состояние .

Из вершины возможны два варианта перехода: в вершинyили вершину . При переходе сумма издержек составляет 10 + 8 = 18, на переходе сумма составляет 13 + 11 = 24. Из двух вариантов суммарных издержек выбираем наименьшую (18) и обозначаем стрелкой условно оптимальный переход, как показано на рис. 1.2.3.

Рис 1.2.3 Сетевая модель операции (шаг 2)

3-й шаг: k = 3. На третьем шаге сечение проходит через вершины , , ,. Из вершин и возможен единственный переход в вершины соответственно. Суммарные издержки для состояния равны 22 + 12 = 34. Из вершины возможны два варианта перехода: в вершину издержки равны 17 + 8 = 25; в вершину 18 + 9 = 27.

Для вершины возможен переход в вершину (18 + 10 = 28) и в вершину (22 + 12 = 34). Выбираем для вершин и наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход, как показано на рис. 1.2.4.

Рис 1.2.4 Сетевая модель операции (шаг 3)

Продолжая процесс аналогичным образом для оставшихся шагов, приходим в точкуВ результате получим граф условно оптимальных переходов, представленный на рис. 1.2.5.

Рис 1.2.5 Сетевая модель связи расходов операций

II этап. Безусловная оптимизация.

Определяем оптимальную траекторию на исходном сетевом графе, просматривая результаты всех шагов в обратном порядке, учитывая, что выбор некоторого управления на k-м шаге приводит к тому, что состояние на (к — 1)-м шаге становится определенным.

В результате строим ориентированный граф перехода из состояния в состояние, представленный на рис. 1.2.6; на каждом шаге безусловной оптимизации переход почти всегда единственный и совпадает с построенными условно оптимальными переходами.

Рис 1.2.6 Оптимальная последовательность операций


2 Практическая часть

Условие задачи:

Определите оптимальную последовательность операций по приемке и отпуску товаров на предприятии оптовой торговли, позволяющую минимизировать суммарные издержки при условиях, приведенных в виде матрицы вариантов связей и затрат по каждой операции.

Рис 2.1 Графическая схема связи операций

2.1 Решение задачи с помощью математического аппарата

I этап. Условная оптимизация

1-й шаг: k = 1. На первом шаге с задаваемым сечением, из состояний и возможен только один вариант перехода вконечное состояние . Поэтому в вершинах и записываемсоответственно издержки 12 и 9. Ребра и обозначаемстрелкой, направленной в вершину -.

2-й шаг: k = 2. Второй шаг оптимизации задается сечением по вершинам. Из состояний и , возможен единственный переход в вершины , и соответственно, поэтому в вершинах и записываем суммарные издержки 25 и 19 на первых двух шагах перехода в конечное состояние .

Из вершины возможны два варианта перехода: в вершинyили вершину . При переходе сумма издержек составляет 12 + 10 = 22, на переходе сумма составляет 13 + 9 = 22. Из двух вариантов суммарных издержек выбираем наименьшую (22) и обозначаем стрелкой условно оптимальный переход,.

3-й шаг: k = 3. На третьем шаге сечение проходит через вершины , , ,. Из вершин и возможен единственный переход в вершины соответственно. Суммарные издержки для состояния равны 19 + 11 = 30, для состояния равны 25+11=36. Из вершины возможны два варианта перехода: в вершину издержки равны 25 + 11 = 36; в вершину 22 + 14 = 36.

Для вершины возможен переход в вершину (22 + 15 = 37) и в вершину (19 + 19 = 38). Выбираем для вершин и наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

4-й шаг: k = 4. На четвертом шаге сечение проходит через вершины , , ,, Из вершин и возможен единственный переход в вершины соответственно. Суммарные издержки для состояния равны 30 + 19 = 49, для состояния равны 36+9=45. Из вершины возможны два варианта перехода: в вершину издержки равны 36 + 12 = 48; в вершину 36 + 15 = 51.

Для вершины возможен переход в вершину (36 + 13 = 49) и в вершину (37 + 18 = 55). Выбираем для вершин и наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

Для вершины возможен переход в вершину (30 + 18 = 48) и в вершину (37 + 14 = 51). Выбираем для вершины наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

5-й шаг: k = 5. На пятом шаге сечение проходит через вершины , , ,, Из вершины возможен единственный переход в вершину . Суммарные издержки для состояния равны 45 + 8 = 53. Из вершины возможны два варианта перехода: в вершину издержки равны 45+13 = 58; в вершину 48 + 14 = 62.

Для вершины возможен переход в вершину (48 + 14 = 62) и в вершину (49 + 21 = 70). Выбираем для вершин и наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

Для вершины возможен переход в вершину (48+ 13 = 61) и в вершину (49 + 12 = 61). Выбираем для вершины наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

Для вершины возможен переход в вершину (49 + 17 = 66) и в вершину (48 + 16 = 64). Выбираем для вершины наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

6-й шаг: k = 6. На шестом шаге сечение проходит через вершины , , ,, Из вершины возможен единственный переход в вершину . Суммарные издержки для состояния равны 53 + 10 = 63. Из вершины возможны два варианта перехода: в вершину издержки равны 53+14 = 67; в вершину 58 + 13 = 71.

Для вершины возможен переход в вершину (58 + 12 = 70) и в вершину (62 + 20 = 82). Выбираем для вершин и наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

Для вершины возможен переход в вершину (61+ 12 = 73) и в вершину (62 + 11 = 73). Выбираем для вершины наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

Для вершины возможен переход в вершину (64 + 16 = 80) и в вершину (61+ 13 = 74). Выбираем для вершины наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

7-й шаг: k = 7. На седьмом шаге сечение проходит через вершины , , ,. Из вершины возможен переход в вершину (63 + 15 = 78) и в вершину (67 + 12 = 79).

Для вершины возможен переход в вершину (67 + 13 = 80) и в вершину (70 + 19 = 89).

Для вершины возможен переход в вершину (70 + 13 = 83) и в вершину (73 + 12 = 85).

Для вершины возможен переход в вершину (73 + 15 = 88) и в вершину (74 + 14 = 88).

Выбираем для вершин , , , наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

8-й шаг: k = 8. На восьмом шаге сечение проходит через вершины , , . Из вершины возможен переход в вершину (78 + 11 = 89) и в вершину (80 + 18 = 98).

Для вершины возможен переход в вершину (80 + 10 = 90) и в вершину (83 + 10 = 93).

Для вершины возможен переход в вершину (83 + 12 = 95) и в вершину (88 + 10 = 98).

Выбираем для вершин , , наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

9-й шаг: k = 9. На девятом шаге сечение проходит через вершины , . Из вершины возможен переход в вершину (89 + 10 = 99) и в вершину (90 + 10 = 100).

Для вершины возможен переход в вершину (90 + 10 = 100) и в вершину (95 + 15 = 110).

Выбираем для вершин , наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход.

10-й шаг: k = 10. На девятом шаге сечение проходит через точку . Из вершины возможен переход в вершину (99 + 9 = 108) и в вершину (100 + 13 = 113).

Минимальные возможные суммарные издержки равны 108.

В результате получим граф условно оптимальных переходов, представленный на рис. 2.1.1.

Рис 2.1.1. Сетевая модель связи расходов операций

II этап. Безусловная оптимизация.

Определяем оптимальную траекторию на исходном сетевом графе, просматривая результаты всех шагов в обратном порядке, учитывая, что выбор некоторого управления на k-м шаге приводит к тому, что состояние на (k— 1)-м шаге становится определенным.

В результате строим ориентированный граф перехода из состояния в состояние, представленный на рис. 2.1.2; на каждом шаге безусловной оптимизации переход почти всегда единственный и совпадает с построенными условно оптимальными переходами.

Рис 2.1.2. Оптимальная последовательность операций

2.2 Решение задачи средствами прикладных программ

2.2.1 Технология разработки формы для ввода исходных данных
средствами
VBA

Размещаем на рабочем листе Excel элемент управления Кнопка. Далее в открывшемся окне «Назначить макрос объекту», нажимаем на кнопку «Создать». В открывшемся окне MSVisualBasic создаем новую форму, для этого выберем команду Insert / UserForm.

В тексте процедуры CommandButton1_Click() запишем команду UserForm1.Show, что позволит при нажатии на кнопку вызывать форму.

После этого размещаем объекты на форме UserForm1. Настройка объектов осуществляется в соответствии с параметрами таблицы 1 Настройка формы ввода данных в Excel в приложении А.

Рис 2.2.1.1 Форма ввода данных в Excel

В обработчике события CommandButton2_Click() осуществим ввод данных согласно условию задачи.

2.2.2 Описание процесса решения в Excel

Ввод исходных данных в рабочую книгу Excel осуществляется на листе «Лист 1» по нажатию на кнопку «Форма для ввода данных». Далее нажимаем на кнопку «Определение оптимальной последовательности», после чего производится расчет.

Рис 2.2.2.1 Таблица Excel для определения оптимальной последовательности

В ячейки A1-M9 вводятся исходные данные, и рассчитываются минимальные издержки на каждом шаге.

В ячейке Е11 определяются минимальные возможные издержки.

Ячейки выделенные красным цветом показывают оптимальную последовательность операций по приемке и отпуску товаров с минимальными суммарными издержками.

Листинг расчетов в VBAпредставлен в приложении Б.

Вывод. В результате выполнения задачи в Excel’е на листе «Лист 1» выводится оптимальная последовательность операций по приемке и отпуску товаров с минимальными суммарными издержками (в ячейках выделенных красным цветом). Полученные результаты после решение задачи с помощью математического аппарата и решения задачи в Excel’е сходятся.

2.3 Автоматизация решения задачи

2.3.1 Техническое задание на разработку программного продукта

Полное наименование программного продукта – «Автоматизированная система решения задачи построения оптимальной последовательности операций в коммерческой деятельности». Краткое наименование программного продукта – «Optimum».

Данный программный продукт предназначен для минимизирования суммарных издержек.

Основанием для разработки данного проекта является задание на курсовое проектирование по дисциплине «Математические методы».

Наименование темы разработки − «Построение оптимальной последовательности операций в коммерческой деятельности».

Данная работа будет являться практической частью курсового проекта по дисциплине «Математические методы».

Целью данной разработки является оптимизации задачи сетевого моделирования.

Данный программный продукт должен совершать расчет минимальных издержек на каждом шаге, определять оптимальную последовательность операций.

Для нормального функционирования данного программного продукта нужен компьютер следующей конфигурации:

− центральный процессор управления (1,4ГГц);

− оперативная память (128 Мб);

− материнская плата;

− жёсткий диск (10Гб);

− монитор (15 дюймовый);

− клавиатура (стандартная 102);

− мышь (можно шариковую);

− видеокарта (можно интегрированную);

− устройства считывания носителей;

− ОС Windows 2000/XP.

Разработка программы должна вестись на языке программирования BorlandDelphiv 7.0.

Данная программа должна работать в ОС Windows.

Испытания и тестирование программы должны проводиться в процессе создания программы самими разработчиками:

1. с использованием контрольных тестов, позволяющих добиться проверки правильности работоспособности и взаимной совместимости максимального числа функций и операторов программы или модуля при минимальных затратах временных и финансовых ресурсов.

2. путем пошагового исполнения программы или модуля (и непрерывного контроля значений переменных) в соответствии с набором тестовых примеров и сравнений полученных в процессе тестирования значений с контрольными значениями тестовых примеров.

Приемка программы должна осуществляться руководителем курсового проектирования. Программа должна считаться годной, если она удовлетворяет всем пунктам данного технического задания.

2.3.2 Алгоритм решения задачи

Блок-схема алгоритма разработана в соответствии с ГОСТ 19.701-90 и находится в приложении А.


Заключение

В курсовом проекте была поставлена проблема построения оптимальной последовательности операций в коммерческой деятельности, обоснована её актуальность и практическая значимость.

В первой части были рассмотрены теоретические вопросы, раскрывающие суть проблемы курсового проекта.

Во второй части составлена математическая модель задачи, предложенной для курсового проекта, выполнено её решение с помощью математического аппарата, рассмотрены принципы использования прикладной программы MSExcel 2007 для ввода исходных данных и расчёта основных параметров указанной модели.

Для автоматизации процесса решения задачи курсового проекта не было разработано приложение«Optimum» с помощью среды программирования BorlandDelphi 7.

Таким образом, не все поставленные задачи были выполнены, цель курсового проектирования достигнута частично.


Библиографический список

1. Акулич, И. Л. Математическое программирование в примерах и задачах: Учеб. пособие / И. Л. Акулич. – СПб.: Лань, 2009.

2. Замков, О. О. Математические методы в экономике: Учеб. пособие для вузов / О. О. Замков, А. В. Толстопятенко, Ю. Н Черемных. – М.: Дело и Сервис, 2004.

3. Интрилигатор, М. Н. Математические методы оптимизации и экономическая теория: Учеб. пособие для вузов / М. Н. Интрилигатор. – М.: Айрис-Пресс, 2002.

4. Минюк, С. А. Дифференциальные уравнения и экономические модели: Учеб. пособие для вузов / С. А. Минюк, Н. С. Берёзкина. – Минск: Вышэйшая школа, 2007.

5. Михеев, Р. Н. VBA и программирование в MS Office для пользователей / Р. Н. Михеев. – СПб.: БХВ-Петербург, 2006.

6. Пелих, А. С. Экономико-математические методы и модели в управлении производством: Учеб. пособие для вузов / А. С. Пелих, Л. Л. Терехов, Л. А. Терехова. – Ростов-на-Дону: Феникс, 2005.

7. Фомин, Г. П. Математические методы и модели в коммерческой деятельности: Учеб. пособие для вузов / Г. П. Фомин. – М.: Инфра-М, 2009.


Приложение А Блок-схема алгоритма


Приложение Б Листинг расчета в VBA

Private Sub CommandButton1_Click()

UserForm1.Show

End Sub

Private Sub CommandButton2_Click()

i1 = 1

l1 = 9

Do

If (i1 <> 13) And (l1 <> 1) Then

If (Cells(l1 - 2, i1) <= Cells(l1, i1 + 2)) And (Cells(l1 - 1, i1).Font.Italic = True) Then

Cells(l1 - 2, i1).Interior.Color = 150

l1 = l1 - 2

i1 = i1

ElseIf (Cells(l1 - 2, i1) >= Cells(l1, i1 + 2)) And (Cells(l1, i1 + 1).Font.Italic = True) Then

Cells(l1, i1 + 2).Interior.Color = 150

l1 = l1

i1 = i1 + 2

ElseIf Cells(l1, i1 + 1).Font.Italic = True Then

Cells(l1, i1 + 2).Interior.Color = 150

l1 = l1

i1 = i1 + 2

ElseIf Cells(l1 - 1, i1).Font.Italic = True Then

Cells(l1 - 2, i1).Interior.Color = 150

l1 = l1 - 2

i1 = i1

End If

ElseIf (i1 = 13) And (l1 <> 1) Then

Cells(l1 - 2, i1).Interior.Color = 150

l1 = l1 - 2

i1 = i1

ElseIf (i1 <> 13) And (l1 = 1) Then

Cells(l1, i1 + 2).Interior.Color = 150

l1 = l1

i1 = i1 + 2

ElseIf (i1 = 13) And (l1 = 1) Then

Cells(l1, i1).Interior.Color = 150

Exit Do

End If

Loop While (Cells(1, 13).Interior.Color <> 150)

End Sub

Function vvod()

Worksheets("Лист1").Range("B1") = TextBox1.Text

Worksheets("Лист1").Range("D1") = TextBox2.Text

Worksheets("Лист1").Range("F1") = TextBox3.Text

Worksheets("Лист1").Range("H1") = TextBox4.Text

Worksheets("Лист1").Range("J1") = TextBox5.Text

Worksheets("Лист1").Range("L1") = TextBox6.Text

Worksheets("Лист1").Range("A2") = TextBox7.Text

Worksheets("Лист1").Range("C2") = TextBox8.Text

Worksheets("Лист1").Range("E2") = TextBox9.Text

Worksheets("Лист1").Range("G2") = TextBox10.Text

Worksheets("Лист1").Range("I2") = TextBox11.Text

Worksheets("Лист1").Range("K2") = TextBox12.Text

Worksheets("Лист1").Range("M2") = TextBox13.Text

Worksheets("Лист1").Range("B3") = TextBox14.Text

Worksheets("Лист1").Range("D3") = TextBox15.Text

Worksheets("Лист1").Range("F3") = TextBox16.Text

Worksheets("Лист1").Range("H3") = TextBox17.Text

Worksheets("Лист1").Range("J3") = TextBox18.Text

Worksheets("Лист1").Range("L3") = TextBox19.Text

Worksheets("Лист1").Range("A4") = TextBox21.Text

Worksheets("Лист1").Range("C4") = TextBox22.Text

Worksheets("Лист1").Range("E4") = TextBox23.Text

Worksheets("Лист1").Range("G4") = TextBox24.Text

Worksheets("Лист1").Range("I4") = TextBox25.Text

Worksheets("Лист1").Range("K4") = TextBox26.Text

Worksheets("Лист1").Range("M4") = TextBox20.Text

Worksheets("Лист1").Range("B5") = TextBox28.Text

Worksheets("Лист1").Range("D5") = TextBox29.Text

Worksheets("Лист1").Range("F5") = TextBox30.Text

Worksheets("Лист1").Range("H5") = TextBox31.Text

Worksheets("Лист1").Range("J5") = TextBox32.Text

Worksheets("Лист1").Range("L5") = TextBox27.Text

Worksheets("Лист1").Range("A6") = TextBox34.Text

Worksheets("Лист1").Range("C6") = TextBox35.Text

Worksheets("Лист1").Range("E6") = TextBox36.Text

Worksheets("Лист1").Range("G6") = TextBox37.Text

Worksheets("Лист1").Range("I6") = TextBox38.Text

Worksheets("Лист1").Range("K6") = TextBox39.Text

Worksheets("Лист1").Range("M6") = TextBox33.Text

Worksheets("Лист1").Range("B7") = TextBox41.Text

Worksheets("Лист1").Range("D7") = TextBox42.Text

Worksheets("Лист1").Range("F7") = TextBox43.Text

Worksheets("Лист1").Range("H7") = TextBox44.Text

Worksheets("Лист1").Range("J7") = TextBox45.Text

Worksheets("Лист1").Range("L7") = TextBox40.Text

Worksheets("Лист1").Range("A8") = TextBox47.Text

Worksheets("Лист1").Range("C8") = TextBox48.Text

Worksheets("Лист1").Range("E8") = TextBox49.Text

Worksheets("Лист1").Range("G8") = TextBox50.Text

Worksheets("Лист1").Range("I8") = TextBox51.Text

Worksheets("Лист1").Range("K8") = TextBox52.Text

Worksheets("Лист1").Range("M8") = TextBox46.Text

Worksheets("Лист1").Range("B9") = TextBox54.Text

Worksheets("Лист1").Range("D9") = TextBox55.Text

Worksheets("Лист1").Range("F9") = TextBox56.Text

Worksheets("Лист1").Range("H9") = TextBox57.Text

Worksheets("Лист1").Range("J9") = TextBox58.Text

Worksheets("Лист1").Range("L9") = TextBox53.Text

Worksheets("Лист1").Range("m1") = "0"

Range("a9").Interior.Color = 150

Range("k1") = Range("m1") + Range("l1")

Range("i1") = Range("k1") + Range("j1")

Range("g1") = Range("i1") + Range("h1")

Range("e1") = Range("g1") + Range("f1")

Range("c1") = Range("e1") + Range("d1")

Range("a1") = Range("c1") + Range("b1")

Range("m3") = Range("m1") + Range("m2")

Range("m5") = Range("m3") + Range("m4")

Range("m7") = Range("m5") + Range("m6")

Range("m9") = Range("m7") + Range("m8")

If (Range("K1") + Range("K2")) <= (Range("M3") + Range("L3")) Then

Range("K3") = Range("K1") + Range("K2")

Range("k2").Font.Italic = True

Else: Range("K3") = Range("M3") + Range("L3")

Range("l3").Font.Italic = True

End If

If (Range("I1") + Range("I2")) <= (Range("K3") + Range("J3")) Then

Range("I3") = Range("I1") + Range("I2")

Range("i2").Font.Italic = True

Else: Range("I3") = Range("K3") + Range("j3")

Range("j3").Font.Italic = True

End If

If (Range("g1") + Range("g2")) <= (Range("i3") + Range("h3")) Then

Range("g3") = Range("g1") + Range("g2")

Range("g2").Font.Italic = True

Else: Range("g3") = Range("i3") + Range("h3")

Range("h3").Font.Italic = True

End If

If (Range("e1") + Range("e2")) <= (Range("g3") + Range("f3")) Then

Range("e3") = Range("e1") + Range("e2")

Range("e2").Font.Italic = True

Else: Range("e3") = Range("g3") + Range("f3")

Range("f3").Font.Italic = True

End If

If (Range("c1") + Range("c2")) <= (Range("e3") + Range("d3")) Then

Range("c3") = Range("c1") + Range("c2")

Range("c2").Font.Italic = True

Else: Range("c3") = Range("e3") + Range("d3")

Range("d3").Font.Italic = True

End If

If (Range("a1") + Range("a2")) <= (Range("c3") + Range("b3")) Then

Range("a3") = Range("a1") + Range("a2")

Range("a2").Font.Italic = True

Else: Range("a3") = Range("c3") + Range("b3")

Range("b3").Font.Italic = True

End If

If (Range("K3") + Range("K4")) <= (Range("M5") + Range("L5")) Then

Range("K5") = Range("K3") + Range("K4")

Range("k4").Font.Italic = True

Else: Range("K5") = Range("M5") + Range("L5")

Range("l5").Font.Italic = True

End If

If (Range("i3") + Range("i4")) <= (Range("k5") + Range("j5")) Then

Range("i5") = Range("i3") + Range("i4")

Range("i4").Font.Italic = True

Else: Range("i5") = Range("k5") + Range("j5")

Range("j5").Font.Italic = True

End If

If (Range("g3") + Range("g4")) <= (Range("i5") + Range("h5")) Then

Range("g5") = Range("g3") + Range("g4")

Range("g4").Font.Italic = True

Else: Range("ig") = Range("i5") + Range("h5")

Range("h5").Font.Italic = True

End If

If (Range("e3") + Range("e4")) <= (Range("g5") + Range("f5")) Then

Range("e5") = Range("e3") + Range("e4")

Range("e4").Font.Italic = True

Else: Range("e5") = Range("g5") + Range("f5")

Range("f5").Font.Italic = True

End If

If (Range("c3") + Range("c4")) <= (Range("e5") + Range("d5")) Then

Range("c5") = Range("c3") + Range("c4")

Range("c4").Font.Italic = True

Else: Range("c5") = Range("e5") + Range("d5")

Range("d5").Font.Italic = True

End If

If (Range("a3") + Range("a4")) <= (Range("c5") + Range("b5")) Then

Range("a5") = Range("a3") + Range("a4")

Range("a4").Font.Italic = True

Else: Range("a5") = Range("c5") + Range("b5")

Range("b5").Font.Italic = True

End If

If (Range("k5") + Range("k6")) <= (Range("m7") + Range("l7")) Then

Range("k7") = Range("k5") + Range("k6")

Range("k6").Font.Italic = True

Else: Range("k7") = Range("m7") + Range("l7")

Range("l7").Font.Italic = True

End If

If (Range("i5") + Range("i6")) <= (Range("k7") + Range("j7")) Then

Range("i7") = Range("i5") + Range("i6")

Range("i6").Font.Italic = True

Else: Range("i7") = Range("k7") + Range("j7")

Range("j7").Font.Italic = True

End If

If (Range("g5") + Range("g6")) <= (Range("i7") + Range("h7")) Then

Range("g7") = Range("g5") + Range("g6")

Range("g6").Font.Italic = True

Else: Range("g7") = Range("i7") + Range("h7")

Range("h7").Font.Italic = True

End If

If (Range("e5") + Range("e6")) <= (Range("g7") + Range("f7")) Then

Range("e7") = Range("e5") + Range("e6")

Range("e6").Font.Italic = True

Else: Range("e7") = Range("g7") + Range("f7")

Range("f7").Font.Italic = True

End If

If (Range("c5") + Range("c6")) <= (Range("e7") + Range("d7")) Then

Range("c7") = Range("c5") + Range("c6")

Range("c6").Font.Italic = True

Else: Range("c7") = Range("e7") + Range("d7")

Range("d7").Font.Italic = True

End If

If (Range("a5") + Range("a6")) <= (Range("c7") + Range("b7")) Then

Range("a7") = Range("a5") + Range("a6")

Range("a6").Font.Italic = True

Else: Range("a7") = Range("c7") + Range("b7")

Range("b7").Font.Italic = True

End If

If (Range("k5") + Range("k6")) <= (Range("m7") + Range("l7")) Then

Range("k7") = Range("k5") + Range("k6")

Range("k6").Font.Italic = True

Else: Range("k7") = Range("m7") + Range("l7")

Range("l7").Font.Italic = True

End If

If (Range("k7") + Range("k8")) <= (Range("m9") + Range("l9")) Then

Range("k9") = Range("k7") + Range("k8")

Range("k8").Font.Italic = True

Else: Range("k9") = Range("m9") + Range("l9")

Range("l9").Font.Italic = True

End If

If (Range("i7") + Range("i8")) <= (Range("k9") + Range("j9")) Then

Range("i9") = Range("i7") + Range("i8")

Range("i8").Font.Italic = True

Else: Range("i9") = Range("k9") + Range("j9")

Range("j9").Font.Italic = True

End If

If (Range("g7") + Range("g8")) <= (Range("i9") + Range("h9")) Then

Range("g9") = Range("g7") + Range("g8")

Range("g8").Font.Italic = True

Else: Range("g9") = Range("i9") + Range("h9")

Range("h9").Font.Italic = True

End If

If (Range("e7") + Range("e8")) <= (Range("g9") + Range("f9")) Then

Range("e9") = Range("e7") + Range("e8")

Range("e8").Font.Italic = True

Else: Range("e9") = Range("g9") + Range("f9")

Range("f9").Font.Italic = True

End If

If (Range("c7") + Range("c8")) <= (Range("e9") + Range("d9")) Then

Range("c9") = Range("c7") + Range("c8")

Range("c8").Font.Italic = True

Else: Range("c9") = Range("e9") + Range("d9")

Range("d9").Font.Italic = True

End If

If (Range("a7") + Range("a8")) <= (Range("c9") + Range("b9")) Then

Range("a9") = Range("a7") + Range("a8")

Range("a8").Font.Italic = True

Else: Range("a9") = Range("c9") + Range("b9")

Range("b9").Font.Italic = True

End If

End Function

Private Sub CommandButton2_Click()

TextBox1.Text = "10"

TextBox2.Text = "8"

TextBox3.Text = "9"

TextBox4.Text = "11"

TextBox5.Text = "13"

TextBox6.Text = "12"

TextBox7.Text = "15"

TextBox8.Text = "14"

TextBox9.Text = "13"

TextBox10.Text = "12"

TextBox11.Text = "11"

TextBox12.Text = "10"

TextBox13.Text = "9"

TextBox14.Text = "12"

TextBox15.Text = "13"

TextBox16.Text = "14"

TextBox17.Text = "15"

TextBox18.Text = "14"

TextBox19.Text = "13"

TextBox21.Text = "11"

TextBox22.Text = "13"

TextBox23.Text = "12"

TextBox24.Text = "14"

TextBox25.Text = "13"

TextBox26.Text = "15"

TextBox20.Text = "10"

TextBox28.Text = "18"

TextBox29.Text = "19"

TextBox30.Text = "20"

TextBox31.Text = "21"

TextBox32.Text = "18"

TextBox27.Text = "19"

TextBox34.Text = "10"

TextBox35.Text = "10"

TextBox36.Text = "13"

TextBox37.Text = "11"

TextBox38.Text = "12"

TextBox39.Text = "14"

TextBox33.Text = "11"

TextBox41.Text = "10"

TextBox42.Text = "10"

TextBox43.Text = "12"

TextBox44.Text = "12"

TextBox45.Text = "13"

TextBox40.Text = "18"

TextBox47.Text = "9"

TextBox48.Text = "10"

TextBox49.Text = "12"

TextBox50.Text = "15"

TextBox51.Text = "13"

TextBox52.Text = "16"

TextBox46.Text = "19"

TextBox54.Text = "13"

TextBox55.Text = "15"

TextBox56.Text = "10"

TextBox57.Text = "14"

TextBox58.Text = "16"

TextBox53.Text = "17"

End Sub


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
138293
рейтинг
icon
3048
работ сдано
icon
1327
отзывов
avatar
Математика
Физика
История
icon
137726
рейтинг
icon
5836
работ сдано
icon
2641
отзывов
avatar
Химия
Экономика
Биология
icon
92268
рейтинг
icon
2003
работ сдано
icon
1260
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
51 762 оценки star star star star star
среднее 4.9 из 5
Университет Синергия
Огромное благодарность Вам! Приятно было с Вами работать.. Надеюсь и на дальнейшее сотрудн...
star star star star star
МГСУ
Оценка "ОТЛИЧНО"! Спасибо!!! Быстро, качественно. без замечаний!!! РЕКОМЕНДУЮ!!!
star star star star star
ЮУрГУ
Качественная работа не к чему придраться, в короткие сроки, спасибо большое
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить

Контрольная, безопасность жизнедеятельности

Срок сдачи к 25 апр.

только что

Решение интегралов

Контрольная, Математика

Срок сдачи к 25 апр.

только что

Решить 20 задач по органической химии

Контрольная, Органическая химия

Срок сдачи к 2 мая

2 минуты назад

Решить таблицу

Контрольная, Управление земельного имущества

Срок сдачи к 25 апр.

2 минуты назад

решений заданий

Решение задач, международное право

Срок сдачи к 27 апр.

3 минуты назад

Тест по русскому языку

Контрольная, Русский язык

Срок сдачи к 25 апр.

3 минуты назад

индивидуальный проект, на любую тему

Другое, индивидуальный проект

Срок сдачи к 25 апр.

5 минут назад

Расчет показателей надежности системы электроснабжения

Решение задач, Надежность электроснабжения

Срок сдачи к 26 апр.

5 минут назад

Отчет по преддипломной практике

Отчет по практике, Экономика

Срок сдачи к 1 мая

6 минут назад

Ответить на 10 вопросов по физике за одиннадцатый класс, фоксфорд

Тест дистанционно, Физика

Срок сдачи к 25 апр.

7 минут назад

Решить РГР

Контрольная, Математическое моделирование систем и процессов

Срок сдачи к 13 мая

7 минут назад

Получение водорода из синтез газа из твёрдых горючих ископаемых

Презентация, Технология синтетических жидких топлив

Срок сдачи к 26 апр.

7 минут назад

Контрольная работа

Контрольная, трудовое право

Срок сдачи к 30 июня

7 минут назад

решение заданий

Решение задач, налоговое право

Срок сдачи к 27 апр.

8 минут назад

Комбинаторика и теории вероятностей

Решение задач, Математика

Срок сдачи к 26 апр.

8 минут назад

Тестирование по предмету "Тяговые электрические машины"

Тест дистанционно, ТЭМ

Срок сдачи к 26 апр.

9 минут назад

Выполнить кр по химии. М-01464

Контрольная, Химия

Срок сдачи к 30 апр.

11 минут назад

интервью

Другое, подредактировать интервью

Срок сдачи к 25 апр.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно