это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Математическая модель системы в переменных пространства состояний имеет вид
, (2.1.1)
(2.1.2)
где мерный вектор параметров состояний; мерный вектор управляющих воздействий; мерный вектор возмущающих воздействий; l- мерный вектор выходов; А – матрица состояний системы размерности ; В – матрица управлений размерности ; Г – матрица возмущений размерности ; С – матрица выходов размерности ln; D – матрица компенсаций (обходов) размерности lm.
Решение векторного дифференциального уравнения (2.1.1) имеет следующий вид:
, (2.1.3)
где - экспоненциал матрицы А.
Подставляя выражение (2.1.3) в формулу (2.1.2), получаем интегральное уравнение движения системы в переменных «вход – выход».
Рассмотрение движения системы в переменных пространства состояний связано с трудностью решения дифференциальных уравнений n-го порядка, описывающих движение системы в переменных «вход – выход», и с хорошо разработанными методами решения систем дифференциальных уравнений первого порядка.
2.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 2.2.1
Определить переходные процессы в системе
(2.2.1)
, (2.2.2)
под действием ступенчатых воздействий по каналам управления
и возмущения .
Решение
В соответствии с выражениями (2.1.2), (2.1.3) запишем уравнение движения системы в интегральной форме
. (2.2.3)
Учитывая, что u(t)=u*1(t)=u, r(t)=r*1(t)=r и t0=0, представим выражение (2.2.3) в виде
. (2.2.4)
Для нахождения экспоненциала матрицы А определим корни характеристического уравнения , то есть
и .
Так как корни различные действительные и матрица А диагональная, то ее экспоненциал равен
. (2.2.5)
Подставляя выражения (2.2.5) в формулу (2.2.4) и последовательно проводя преобразования, получаем
=
.
Следовательно, уравнение движения рассматриваемой системы в переменных «вход – выход» имеет вид:
.
УСТОЙЧИВОСТЬ
Устойчивость или неустойчивость линейной многомерной системы (2.1.1) определяется ее свободным движением (), которое характеризуется собственными числами матрицы А, определяемыми из характеристического уравнения
(3.1.1)
Линейная система (2.1.1) устойчива тогда и только тогда, когда все вещественные части собственных (характеристических) чисел λj=λj(A) (j=1,…,n) имеют неположительные значения, т.е. Reλj. Если Reλj<0, то система асимптотически устойчива.
Характеристическое уравнение (3.1.1) можно записать в виде
nn-1nn0. (3.1.2)
Условия устойчивости для системы n-го порядка записываются в виде определителей Гурвица, получаемых из квадратной матрицы коэффициентов характеристического уравнения (3.1.2).
.
Для устойчивости линейной системы по критерию Гурвица необходимо и достаточно, чтобы при α0>0 были положительными и все n диагональных определителей Гурвица, то есть ΔI>0 (i=l,...,n). Положительность последнего определителя Гурвица
Δn=αnΔn-1 (3.1.3)
при Δn-1>0 сводится к положительности свободного члена αn характеристического уравнения.
Задача 3.2.1
Определить устойчивость и характер свободного движения динамической системы, заданной в пространстве состояний векторными уравнениями
, (3.2.1)
. (3.2.2)
Решение.
Запишем для системы (3.2.1) характеристическое уравнение (3.1.1)
, (3.2.3)
решение которого дает следующие корни:
.
Рассматриваемая динамическая система является устойчивой. Ее свободное движение носит апериодический сходящийся характер, так как вещественные части корней характеристического уравнения отрицательные.
Задача 3.2.2
Определить устойчивость динамической системы, заданной в пространстве состояний векторно-матричными уравнениями
, , (3.2.4)
. (3.2.5)
Решение.
Запишем для системы (3.2.4) характеристическое уравнение (3.1.1)
. (3.2.6)
Раскроем скобки и приведем подобные члены, получим следующее характеристическое уравнение:
. (3.2.7)
Устойчивость системы будем определять на основе алгебраического критерия устойчивости Гурвица, составив для этого по уравнению (3.2.7) матрицу Гурвица
. (3.2.8)
Для устойчивости линейной системы по критерию Гурвица необходимо и достаточно, чтобы при положительности коэффициента при старшей степени (в нашем случае коэффициент при λ3 равен 1) были положительными и все n диагональных определителей Гурвица, то есть Δi>0 (i=1,2,3)
, .
В соответствии с вышеизложенным находим, что свободный член характеристического уравнения (3.2.7) равный 54 - положительный.
Следовательно, система (3.2.4) является устойчивой.
Управляемость системы (2.1.1), (2.1.2) по состояниям определяется теоремой (критерием) Калмана: система будет управляемой тогда и только тогда, когда ранг матрицы управляемости Lc размерности равен n, то есть
rankn, (4.1.1)
где
. (4.1.2)
Если rank<n, то система будет частично управляемой, а при rank=0 – полностью неуправляемой.
Управляемость системы (2.1.1), (2.1.2) по выходам (критерий Калмана): система будет управляемой тогда и только тогда, когда ранг матрицы управляемости размерности равен l то есть
rank=l, (4.1.3)
где
. (4.1.4)
Если rank<l, то система будет частично управляемой по выходам, а при rank=0 – полностью неуправляемой.
Показатель степени n в выражениях (4.1.2), (4.1.4) соответствует размерности вектора состояний.
4.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 4.2.1
Определить управляемость динамической системы по состояниям, заданной векторными уравнениями
,
(4.2.1)
. (4.2.2)
Решение.
В соответствии с выражением (4.1.2) запишем матрицу управляемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
Следовательно, матрица управляемости имеет вид
,
и ее ранг rank2, то есть настоящая система полностью управляема по состояниям.
Задача 4.2.2
Определить управляемость по выходам динамической системы, заданной векторными уравнениями
,
.
Решение.
В соответствии с выражением (4.1.2) запишем матрицу управляемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
.
Следовательно, матрица управляемости имеет вид
,
и ее ранг rank=2, то есть настоящая система полностью управляема по выходам.
Наблюдаемость системы (2.1.1), (2.1.2) определяется теоремой (критерием) Калмана: система будет вполне наблюдаемой тогда и только тогда, когда ранг матрицы наблюдаемости L0 размерности равен n, то есть
rankn, (5.1.1)
где
. (5.1.2)
Если rank<n, то система будет не вполне наблюдаемой, а при rank=0 – полностью ненаблюдаемой.
Задача 5.2.1
Определить наблюдаемость динамической системы, заданной векторными уравнениями
.
Решение.
В соответствии с выражением (5.1.2) запишем матрицу наблюдаемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
Следовательно, матрица наблюдаемости имеет вид
,
и ее ранг rank2, то есть настоящая система полностью наблюдаема.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!