Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение задачи Коши для систем обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсо

Тип Реферат
Предмет Математика
Просмотров
1385
Размер файла
59 б
Поделиться

Ознакомительный фрагмент работы:

Решение задачи Коши для систем обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсо

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ……………………………………………………………….…………3

ГЛАВА I. РЕШЕНИЕ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМ ДИФФЕРНЕЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДОМ РУНГЕ-КУТТА-МЕРСОНА…………………………………………………………………..………4

1.1. Постановка задачи Коши для систем обыкновенных дифференциальных уравнений………….……………..................…...4

1.2. Метод Рунге-Кутта-Мерсона………………………………………….5

1.3. Алгоритм решения задачи Коши для систем обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсона……………….........................................................………..….7

ГЛАВА II. ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРЕМЕНТ………….………...…....8

2.1. Постановка задачи……………………………………………………..8

2.2. Анализ результатов……………………………………………….....…9

ЗАКЛЮЧЕНИЕ………………………………………………………………..….10СПИСОК ЛИТЕРАТУРЫ………...……………........................................ ..........11

ПРИЛОЖЕНИЕ.......................................................................................................12

Приложение 1........................................................................................12

Приложение 2........................................................................................16

ВВЕДЕНИЕ

Обыкновенные дифференциальные уравнения широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Множество переходных процессов в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью обыкновенных дифференциальных уравнений.

Актуальность темы курсовой работы состоит в том, что ОДУ имеют аналитически сложное решение и составление программы, реализируещей численное решение облегчило бы эту задачу.

В курсовой работе решается задача разработки программы поиска решения системы дифференциальных уравнений методам Рунге-Кутта-Мерсона.

Выбор метода решения системы дифференциальных уравнений объясняется тем, что метод Кутта-Мерсона сочетает хорошую точность и высокую скорость.

Цель работы: составить программу для решения задачи Коши для системы дифференциальных уравнений методом Рунге-Кутта-Мерсона на примере, проверить полученное решение в MathCad и проанализировать результаты.

ГЛАВА I. РЕШЕНИЕ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМ ДИФФЕРНЕЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДОМ РУНГЕ-КУТТА-МЕРСОНА

1.1. Постановка задачи Коши для систем обыкновенных дифференциальных уравнений

Задача Коши заключается в решении систем обыкновенных дифференциальных уравнений первого порядка, представляемых в виде:

(1)

Где j=1N-номер каждой зависимой переменной yj, x-независимая переменная .

Решение системы (1) при заданных начальных условиях

x=x0,

y1(x0)=y10,…, (2)

y2(x0)=y20,

yN(x0)=yN0

сводиться к нахождению зависимостей (интегральных кривых) y1(x),…,y2(x), yN(x), проходящих через точки (x0,y10), (x0,y20),…, (x0,yN0). Задача Коши сводиться к интегрированию дифференциальных уравнений. Порядок метода численного интегрирования при этом определяется и порядок метода решения.

1.2. Метод Рунге-Кутта-Мерсона

Автоматическое изменение шага в ходе решения систем дифференциальных уравнений необходимо, если решение требуется получить с заданной точностью. При высокой точности (погрешность ) и решении в виде кривых с сильно различающейся крутизной автоматическое изменение шага обеспечивает уменьшение общего числа шагов в несколько раз, резко уменьшается вероятность числовой неустойчивости, даёт более равномерное расположение точек графика кривых (решений) при их выводе на печать. Данный метод обеспечивает приближённую оценку погрешностей на каждом шаге интегрирования. Погрешность интегрирования имеет порядок h5. Этот метод реализуется следующим алгоритмом: Задаём число уравнений N, погрешность ε=E, начальный шаг интегрирования h=H и начальное значение y10,…,yN0. С помощью пяти циклов с управляющей переменной J=1,2,..,N вычисляем коэффициенты:

(3)

(4)

(5)

(6)

(7)

Находим (в последнем цикле) значение (8):

(8)

И погрешность

(9)

Проверяем выполнения условий

(10)

(11)

Если условие (10) не выполняется, то делим шаг h на 2 и повторяем вычисления. Если это условие выполняется и выполняется условие (11), значение xi+1=xi+h и Yj(i+1), то считаем, что решение системы дифференциальных уравнений найдено с заданной точностью. Если условие (11) не выполняется , шаг h увеличивается вдвое и вычисления повторяются.

1.3. Алгоритм решения задачи Коши для систем обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсона

1. Задание начального шаг - h, начальных значений xо,y10,…,yN0 и точности вычисления - ε.

2. В подпрограмме-процедуре задаём вид системы дифференциальных уравнений

3. В подпрограмме-функции задаём вид правой части уравнений

4. С помощью пяти циклов с управляющей переменной J=1,N вычисляем коэффициенты по формулам (3)-(7).

5. В последнем цикле находим решение системы дифференциальных уравнений по формуле (8) и погрешность по формуле (9).

6. Проверка выполнение условий (10) и (11). Если первое условие не выполняется то h:=h/2 и переходим к п.3

7. Если выполняются оба условия, то значение xi+1=xi+h и Yj(i+1) выводим на экран.

8. Если второе условие не выполняется, то h:=h+h и переходим к п.3

9. Вывести результаты вычислений в новом окне.

ГЛАВА II. ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРЕМЕНТ

2.1. Постановка задачи

Ставится задача составить программу решения системы дифференциальных уравнений на примере:

(12)

Начальные условия:

y(1)=2; y(2)=1. (13)

Требуется найти решение системы дифференциальных уравнений (12) с начальными условиями (13) методом Рунге-Кутта-Мерсона.

2.2. Анализ результатов

Система обыкновенных дифференциальных уравнений была решена методом Рунге-Кутта-Мерсона (см. Приложение 1).

Для проверки результата выполнения программы данная система была решена в MathCad(см. Приложение 2).

Для анализа результатов построим графики данных систем:

Сравнение результатов показывает, что они обеспечивают примерно одинаковое решение.

В большинстве случаев метод Рунге-Кутта-Мерсона даёт более точный результат (погрешность ). Кроме того, хотя он громоздок в реализации, но быстрая сходимость метода компенсирует увеличение числа вспомогательных операций и, резко уменьшает вероятность числовой неустойчивости.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе реализована средствами языка программирования Delphi программа, позволяющая решить систему обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсона.

Также было проверенно решение данной системы в MathCad и проанализированы результаты.

Из анализа результатов вычисления можно сделать вывод о большей точности вычисления по методу Рунге-Кутта-Мерсона.

СПИСОК ЛИТЕРАТУРЫ

1. Н. Бахвалов, Н. Жидков, Г. Кобельков. Численные методы. М., 2002, 632 с.

2. Н. Калиткин. Численные методы. М., 1972,

3. А. Самарский. Введение в численные методы. М., , 270с.

4. Ю. Тарасевич. Численные методы на Mathcad’е. Астрахань, 2000, 70с.

5. М. Лапчик, М. Рагулина, Е. Хеннер. Численные методы.М., 2004, 384с.

ПРИЛОЖЕНИЕ

Приложение 1

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type

TForm1 = class(TForm)

Label1: TLabel;

Image1: TImage;

Label3: TLabel;

Edit1: TEdit;

Label4: TLabel;

Edit2: TEdit;

Label5: TLabel;

Label6: TLabel;

Edit3: TEdit;

Edit4: TEdit;

Button1: TButton;

Label2: TLabel;

Edit5: TEdit;

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

Const n=2;

Type

mas=Array[1..4] of String[60];

var

Form1: TForm1; i,s,p:integer;

h,v,x,e1,e2,e3 : real;

y,w,k,f,e,a,c,d:array[1..10] of real;

j,d2:integer;

k2:byte;

implementation

uses Unit2;

{$R *.dfm}

function f1 (x1,y1,y2:real):real;

begin

f1:=y1+y2-x1*x1+x1-2;

end;

function f2(x1,y1,y2:real):real;

begin

f2:=-2*y1+4*y2+2*x1*x1-4*x1-7;

end;

procedure ur;

begin

f[1]:=f1(x,y[1],y[2]);

f[2]:=f2(x,y[1],y[2]);

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

h:=strtofloat(edit1.Text);

e1:=strtofloat(edit2.Text);

x:=strtofloat(edit5.Text);

w[1]:=strtofloat(edit3.Text);

w[2]:=strtofloat(edit4.Text);

k2:=0;

e3:=0;

ur;

d2:=0;

for j:=1 to n do

begin

a[j]:=f[j]*H;

y[j]:=W[j]+a[j]/3;

end;

x:=x+h/3;

ur;

for j:=1 to n do

begin

y[j]:=W[j]+(a[j]+f[j]*H)/6;

end;

ur;

for j:=1 to n do

begin

c[j]:=f[j]*H;

y[j]:=W[j]+a[j]/8+0.375*c[j];

end;

x:=x+h/6;

ur;

for j:=1 to n do

begin

d[j]:=f[j]*H;

y[j]:=W[j]+a[j]/2-1.5*c[j]+2*d[j];

end;

x:=x+h/2;

ur;

for j:=1 to n do

begin

e[j]:=f[j]*H;

y[j]:=W[j]+(a[j]+4*d[j]+e[j])/6;

e2:=abs(-2*a[j]+9*c[j]-8*d[j]+e[j])/30;

if e2<=e1 then

if e2<e1/20 then d2:=d2+1 else

e3:=0;

end;

if e3<>0 then begin

x:=x-h;

for j:=1 to n do begin

y[j]:=W[j];

end;

H:=H/2;

end

else k2:=1;

if d2=n then H:=H+H;

form2.Show;

form2.edit1.text:=floattostr(y[1]);

form2.edit2.text:=floattostr(y[2]);

end;

end.

Приложение 2


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 395 оценок star star star star star
среднее 4.9 из 5
ЮУрГУ
Анна очень добросовестный исполнитель, я буду обращаться к ней еще. Задание выполнено намн...
star star star star star
ОГИС
Работа выполнена быстро и качественно! По написанию-доступна к восприятию! Легко читается!...
star star star star star
ИРНИТУ
Работа выполнена досрочно, исполнитель всегда на связи, можно обсудить интересующие вопрос...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

построить логическую схему F(a, b) под цифрой...

Решение задач, Информатика

Срок сдачи к 15 янв.

2 минуты назад
4 минуты назад

Проектирование различных форм взаимодействия органов местного самоуправления со СМИ

Магистерская диссертация, Государственное и муниципальное управление

Срок сдачи к 31 мар.

11 минут назад

Сделать презентацию + доклад

Презентация, основы теории английского языка

Срок сдачи к 15 янв.

11 минут назад

Оценка эффективности использования оборотного капитала предприятия

Курсовая, Анализ финансово-хозяйственной деятельности (афхд)

Срок сдачи к 29 янв.

11 минут назад

Контрольная работа

Решение задач, БЖД

Срок сдачи к 18 янв.

11 минут назад

Курсовая по предмету «Экономика»

Курсовая, Экономика

Срок сдачи к 27 янв.

11 минут назад

Выпускная квалификационная работа

Диплом, Машиностроение

Срок сдачи к 31 янв.

11 минут назад

выделить цифры на картинках ярким цветом

Другое, Медицина

Срок сдачи к 15 янв.

11 минут назад

Сделать курсовую работу и 3 лабораторных работы

Курсовая, Математические основы управления и методы инженерных задач

Срок сдачи к 18 янв.

11 минут назад

Размер пенсии по старости, 30-40стр

Курсовая, Право социального обеспечения

Срок сдачи к 13 февр.

11 минут назад

Решить несложное задание

Решение задач, основы технологии машиностроения

Срок сдачи к 15 янв.

11 минут назад

Практическая работа 4, вариант 24. Задание расписано в прикрепленных...

Лабораторная, Теоретические основы электротехники

Срок сдачи к 15 янв.

11 минут назад

построить логическую схему функции F(a, b)

Онлайн-помощь, Информатика

Срок сдачи к 15 янв.

11 минут назад

Решить примеры (9 шт) в Multisim

Лабораторная, Электротехника и электроника

Срок сдачи к 21 янв.

11 минут назад

2 контрольные

Контрольная, Планирование и прогнозирование

Срок сдачи к 16 янв.

11 минут назад

Решить задачи

Решение задач, Начертательная геометрия

Срок сдачи к 15 янв.

11 минут назад

Экономика труда курсовая работа № варианта 4

Курсовая, Экономика предприятия

Срок сдачи к 18 янв.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно