Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Розвязання задачі Коші для звичайного диференціального рівняння першого порядку методом Ейлера

Тип Реферат
Предмет Информатика
Просмотров
1549
Размер файла
119 б
Поделиться

Ознакомительный фрагмент работы:

Розвязання задачі Коші для звичайного диференціального рівняння першого порядку методом Ейлера

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

Кафедра інформатики

КУРСОВА РОБОТА

З програмування

На тему:

“Розв’язання задачі Коші для звичайного диференціального рівняння першого порядку методом Ейлера”

Суми – 2006 р.


План

1. Постановка задачі

2. Визначення. Загальні відомості про задачу Коші для звичайних диференціальних рівнянь першого порядку

3. Розв’язання задачі Коші для звичайних диференціальних рівнянь першого порядку методом Ейлера

а) похибка при вирішенні задачі Коші для звичайних диференціальних рівнянь першого порядку методом Ейлера. Алгоритм розв’язання диференціального рівняння першого порядку методом Ейлера

4. Блок – схема

5. Реалізація алгоритму у середовищі Borland Pascal

6. Результат роботи програми

7. Умовні позначення

8. Список використаних джерел

Постановка задачі

ПОСТАНОВКА ЗАДАЧІ ТА МЕТОД ВИРІШЕННЯ

Вирішити диференціальне рівняння чисельним методом ( у/=f(x,y)) це означає для заданої послідовності аргументів х0, х1…, хn і числа у0, не визначаючи функцію у=F(x),знайти такі значення у1, у2,…, уn, що уi=F(xi)(i=1,2,…, n) і F(x0)=y0.

Таким чином численні методи дозволяють замість знаходження функції У=F(x) отримати таблицю значень цієї функції для заданої послідовності аргументів. . Величина h=xk-xk-1 називаеться кроком інтегрування.

Метод Ейлера відноситься до численних методів, що дають відповідь у вигляді таблиці наближених значень шуканої функціїу(х). він є порівняно грубим та використовуеться в основному для приблизних розрахунків.

Визначення. Загальні відомості про задачу Коші для звичайних диференціальних рівнянь першого порядку

Звичайним диференціальним рівнянням називається рівняння виду :

де порядок старшої похідної к називається порядком звичайного диференціального рівняння. Звичайне диференціальне рівняння має безліч розв’язків. Для знаходження хоча б одного розв’язку потрібні додаткові умови. Ці умови можуть бути двох типів – задача Коші та Краєва задача. Згідно теми курсової роботи розглянемо лише перший тип умови, тобто задачу Коші. При розв’язанні задачі Коші додаткові умови задаються при одному значенні незалежної змінної. Наприклад, при х = а задані значення функції і можливі деякі похідні шуканої функції і так далі…. . Існують декілька методів розв’ язання задачі Коші:

1. Апроксимація рядом Тейлора

2. Методи Рунне – Кутта

3. Методи прогнозу та корекції

Нульовим наближенням всіх вище перерахованих методів вирішення задачі Коші є метод Ейлера.

Розвязання задачі Коші для звичайних диференціальних рівнянь першого порядку методом Ейлера

Розглянемо найпростіший метод вирішення задачі Коші. Проілюструємо його на прикладі звичайного диференціального рівняння першого порядку.

ПУ *

Підстановка ПУ в початкове ЗДР* дає значення похідної функції в початковій точці. Розв’язок в наступній точці записується у вигляді:

.

При цьому допускається похибка : . Далі використовується точка, яку можна вважати початковою і за допомогою її визначається наступна точка і так далі.

Отже узагальнена формула методу Ейлера набуває вигляду:

Похибка, що допускається на кожному кроці : . Сума всіх похибок при обчисленні на кожному з кроків вирішення дає нам загальну похибку . Метод Ейлера є аналогом методу прямокутників для чисельного інтегрування. Якщо права частина початкового ДР* не залежить від у, то значення шуканої функції в точці визначається інтегралом і тоді загальна формула методу Ейлера являє собою формулу лівих прямокутників. Але, на відміну від інтегрування, де похибки просто сумувалися, при вирішенні ДР похибка на попередньому кроці веде до ще більшої похибки на наступному кроці, і як правило сумарна похибка зростає експоненціально з кількістю пройдених вже кроків. . Тож використовуємо модифікований метод Ейлера як найбільш точний.

Похибка при вирішенні задачі Коші для звичайних диференціальних рівнянь першого порядку методом Ейлера

Для ЗДР першого порядку що має ПУ загальна формула методу Ейлера має вигляд . Якщо позначити дійсне вирішення задачі Коші як , то похибка Е в вузлі може бути представлена у вигляді

.


Кали ми визначаємо приріст функції

та вводимо умовні позначення

,

то можливо оцінити зверху :

.

Якщо припустити, що початкова похибка рівна нулю, то випливає висновок :

.

Тепер, якщо замінити у границі , отримаємо:

.

З останнього співвідношення видно, що при похибка Е зростає експоненціально з координатою (при отримуємо ).


Мал. 1

На мал.1 приведені підрахунки для рівняння (вирішення - ). Єдиний спосіб оцінити масштаби похибки, що наросла – провести декілька пробних підрахунків з різними кроками по х.

Алгоритм розв’язання диференціального рівняння першого порядку методом Ейлера

Нижче поданий алгоритм чисельно інтегрує звичайне диференціальне рівняння першого, другого та третього порядку з використанням модифікованого прямого методу Ейлера

При чисельному інтегруванні диференціального рівняння першого порядку y' = F(x,y)

З початковою умовою y(x0 ) = y0 (задача Коші) спочатку вибираємо

порядок похідної – у нашому випадку згідно з варіантом курсової – порядок 1 (диференціальне рівняння першого порядку). Далі визначаємо коефіцієнти та коефіцієнт при х. Вводимо границі відрізку . Фіксований приріст аргументу h = (xf -x0 )/n, де xf - кінцева точка інтервалу інтегрування , n – кількість кроків. Потім, використовуючи процедуру модифікованого методу Ейлера, , обчислюємо yk згідно з рекурсивною формулою:

yk = yk-1 +h[Fk-1 +F(xk , yk-1 +hFk-1 )]/2

де Fk = F(xk , yk ). Можна використовувати іншу рекурсивну формулу:

yk = yk-1 +F(xk-1 +h/2, yk-1 +Fk-1 h/2)

Після визначення кроку, вводимо значення початкової умови. Отримуємо таблицю відповідей.

Блок - схема

Реалізація алгоритму у середовищі Borland Pascal

uses wincrt;

var

yx,xy,l,v,p,ff,ay,by,x:array [0..10] of real;

y,a,b:array[0..10,0..1] of real;

i,n,o:integer;

c,d,h,k:real;

label

lap1;

begin

clrscr;

writeln('введите наивысший порядок производной (в нашем случае - 1)');

readln(n);

if n=0 then begin

writeln('это прямолинейная зависимость и решается без метода Эйлера');

goto lap1;end;

writeln('введите коэффициенты {a0,a1}');

for i:=0 to n do

readln(l[i]);

if (n=1) and (l[1]=0) or (n=2) and (l[2]=0) or (n=3) and (l[3]=0) then begin

writeln('деление на ноль');

goto lap1;

end;

writeln('введите коэффициент при x');

readln(k);

writeln('введите отрезок ');

readln(c,d);

o:=5;

h:=abs(d-c)/o;

writeln('шаг=',h:1:1);

writeln('задайте начальные условия y(x)= ');

for i:=0 to n-1 do

readln(v[i]);

if n=3 then begin

yx[0]:=v[0];

ay[0]:=v[1];

by[0]:=v[2];

p[0]:=(k*c-l[0]*v[0]-l[1]*v[1]-l[2]*v[2])/l[3];

x[0]:=c;

gotoxy(32,1);

write(' ');

gotoxy(32,2);

write(' x y a b ');

gotoxy(32,3);

write(' ',c:7:7,' ',yx[0]:7:7,' ',ay[0]:7:7,' ',by[0]:7:7,' ');

for i:=0 to o-1 do begin

x[i]:=x[i]+h/2;

y[i,1]:=yx[i]+(h/2)*ay[i];

a[i,1]:=ay[i]+(h/2)*by[i];

b[i,1]:=by[i]+(h/2)*p[i];

ff[i]:=(k*x[i]-l[0]*y[i,1]-l[1]*a[i,1]-l[2]*b[i,1])/l[3];

xy[i]:=x[i]+h/2;

yx[i+1]:=yx[i]+h*a[i,1];

ay[i+1]:=ay[i]+h*b[i,1];

by[i+1]:=by[i]+h*ff[i];

x[i+1]:=x[i]+h/2;

p[i+1]:=(k*xy[i]-l[0]*yx[i+1]-l[1]*ay[i+1]-l[2]*by[i+1])/l[3];

end;

for i:=0 to o-1 do begin

gotoxy(32,4+i);

write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ',ay[i+1]:7:7,' ',by[i+1]:7:7,' ');

end;

gotoxy(32,4+o);

write(' ');

end;

if n=2 then begin

x[0]:=c;

yx[0]:=v[0];

ay[0]:=v[1];

p[0]:=(k*c-l[0]*yx[0]-l[1]*v[1])/l[2];

gotoxy(32,1);

write(' ');

gotoxy(32,2);

write(' x y a ');

gotoxy(32,3);

write(' ',c:7:7,' ',yx[0]:7:7,' ',ay[0]:7:7,' ');

for i:=0 to o-1 do begin

x[i]:=x[i]+h/2;

y[i,1]:=yx[i]+(h/2)*ay[i];

a[i,1]:=ay[i]+(h/2)*p[i];

ff[i]:=(k*x[i]-l[0]*y[i,1]-l[1]*a[i,1])/l[2];

xy[i]:=x[i]+h/2;

yx[i+1]:=yx[i]+h*a[i,1];

ay[i+1]:=ay[i]+h*ff[i];

x[i+1]:=x[i]+h/2;

p[i+1]:=(k*xy[i]-l[0]*yx[i+1]-l[1]*ay[i+1])/l[2];

end;

for i:=0 to o-1 do begin

gotoxy(32,4+i);

write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ',ay[I+1]:7:7,' ');

end;

gotoxy(32,4+o);

write(' ');

end;

if n=1 then begin

x[0]:=c;

yx[0]:=v[0];

p[0]:=(k*x[0]-l[0]*yx[0])/l[1];

for i:=0 to o-1 do begin

x[i]:=x[i]+h/2;

y[i,1]:=yx[i]+(h/2)*p[i];

xy[i]:=x[i]+h/2;

ff[i]:=(k*x[i]-l[0]*y[i,1])/l[1];

yx[i+1]:=yx[i]+h*ff[i];

x[i+1]:=x[i]+h/2;

p[i+1]:=(k*xy[i]-l[0]*yx[i+1])/l[1];

end;

gotoxy(32,1);

write(' ');

gotoxy(32,2);

write(' x____________ y ');

write('___________________');

gotoxy(32,3);

write(' ',c:7:7,' ',yx[0]:7:7,' ');

for i:=0 to o-1 do begin

gotoxy(32,4+i);

write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ');

end;

gotoxy(32,o+4);

write(' ');

end;

lap1:readln;

clrscr;

end.

Результат роботи програми

У випадку, коли порядок похідної = 0:


Умовні позначення

1. ПУ * - початкова умова

2. ЗДР* – звичайне диференціальне рівняння

3. ДР* - диференціальне рівняння

Список використаних джерел:

Щодо реалізації алгоритму у середовищі Borland Pascal :

· Боровик В.О., Тиркусова Н.В. програмування: Навч. посібник.-Суми: Вид-во СумДУ, 2004.-Частина 1.-107с. – Рос. Мовою

· Боровик В.О., Тиркусова Н.В. програмування: Навч. посібник.-Суми: Вид-во СумДУ, 2004.-Частина 2.-107с. – Рос. Мовою

· http:// www.forum.pascla.net

· http://pascalclub.ru

Щодо математичного обґрунтування методa:

· Диференціальні рівняння : Навчю посібник А.М. Самійленко, С.А. Кривошия, М.О. Перестук. – К.: Либідь, 2003-504 с.

· http:// www.alglib.sources.ru

· http:// www.alglib.ru

· http:// www.users.kpi.kharkov.ua


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно