Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теория игр, рафический метод в теории игр

Тип Реферат
Предмет Математика
Просмотров
1693
Размер файла
437 б
Поделиться

Ознакомительный фрагмент работы:

Теория игр, рафический метод в теории игр

Челябинский юридический колледж

Кафедра математических и естественнонаучных дисциплин

КУРСОВАЯ РАБОТА

по дисциплине «Математические методы»

Теория игр. Графический метод решения теории игр

Работу выполнила

студентка гр. ПО-001-06

А.В. Егорова
РуководительН.Р. Хабибуллина

Челябинск

2009

Содержание

1. Введение

2. Основные методы решений

2.1.Основные понятия теории игр
2.2.Матричные игры
2.3.Решение матричной игры в чистых стратегиях
2.4.Принцип доминирования
2.5.Решение матричной игры 2×2 в смешанных стратегиях
3. Геометрическое решение игры
3.1.Решение игр с платежной матрицей 2×n
3.2.Решение игр с платежной матрицей m×2

4. Практическая часть

5. Заключение

6. Список литературы

3

4

5

7

11

12

15

18


Введение

Непрерывное и последовательное развитие социалистического общества, его производительных сил и производительных отношений, повышение эффективности общественного производства непрерывно связанно с совершенствование системы планирования и управления. Современные достижения науки и техники все шире используются в практике для получения научно обоснованных наиболее эффективных решений в сфере планирования и управления.

При решении ряда практических задач (в разных областях деятельности) приходится анализировать ситуации, где налицо две ( или более) враждующие стороны, преследующие противоположные цели, причем результат каждого мероприятия одной из сторон зависит от того, какой образ действия выберет противник.

Необходимость анализировать подобные ситуации вызвала к жизни специальные математический аппарат. Теория игр по существу представляет собой не что иное, как математическую теорию конфликтных ситуаций.

Целью данной работы является рассмотрение не только теории игр в общем, но и ее графический метод решения.

Для наиболее оптимального изучения и рассмотрения поставлены следующие задачи:

1. Кратко изложить понятие о теории игр в целом;

2. Рассмотреть основные методы решений задач теории игр;

3. Детально изучить графический метод решения задач теории игр.

4. Привести примеры задач, решенных с помощью этого метода..

Основные методы решений
1.Основные понятия теории игр

Многие социально-экономические ситуации, в которых рассматриваются вопросы о выборе решения, обладают тем свойством, что в них сталкиваются не мнение двух сторон с различными интересами, каждая из которых для достижения своей цели имеет возможность действовать различными способами,

выбор которых при некоторых условиях может осуществляться в зависимости от

действий противоборствующей стороны. Такие ситуации называют конфликтными.

Математическая модель конфликтной ситуации называется игрой. Теория игр занимается математическими моделями принятия оптимальных решений в условиях конфликта. Любое возможное в игре действие игрока называется его стратегией. Игра называется конечной, если множество стратегий каждого игрока конечно. В противном случае (т.е. когда множество стратегий хотя бы одного игрока бесконечно), игра называется бесконечной. В дальнейшем будем рассматривать только конечные игры двух лиц.

Основной целью теории игр является выявление для каждого из игроков «оптимальных стратегий».

Оптимальной называется стратегия, которая при многократно повторяющейся игре гарантирует игроку максимально возможный средний выигрыш (или, эквивалентно, минимально возможный средний проигрыш).Выбор оптимальной стратегии базируется на принципе, предполагающем, что обаигрока разумны в одинаковой степени и поведение каждого из них направлено напротиводействие противнику в достижении его цели. Таким образом, теория играбстрагируется от ошибок, просчетов, азарта и риска, присущих игрокам, реальных конфликтах.

Будем считать, что выигрыш одного игрока равен в точности проигрышу

второго игрока, такая игра называется игрой с нулевой суммой. Конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока, называется биматричной игрой.


2.Матричные игры

Матричной игрой называется конечная игра двух игроков с нулевой

суммой, в которой задается выигрыш игрока 1 в виде матрицы, строка матрицы

соответствует номеру применяемой стратегии игрока 1, столбец – номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы

находится выигрыш игрока 1, соответствующий применяемым стратегиям.

Пусть играют 2 игрока P1 и P2. Матрица

элементы aij – выигрыш игрока P1, если P1 – выбирает i строку, а P2 – выбирает j столбец, называется платежной матрицей игры.

Пусть игрок P1 выбирает i строку с вероятностью xi, P2 выбирает j столбец с

вероятностью yj, тогда и будут называться соответственно смешанными стратегиями 1-ого и 2-ого игроков.

Замечание: так как компонентами смешанных стратегий X и Y являются

вероятности, то и . Если среди компонентов смешанной стратегии X только одна 1, остальные 0, то стратегия называется чистой.

- i-ая чистая стратегия. Любую смешанную стратегию можно представить в виде выпуклой комбинации чистых стратегий, т.е.


Пример. Представить смешанную стратегию в виде выпуклой

комбинации чистых стратегий.

Решение.

Платежной функцией (X ,Y ) первого игрока называется математическое

ожидание его выигрыша, т.е.

(X ,Y )=

Решением матричной игры называют пару смешанных стратегий и

число v называемое ценой игры, удовлетворяющих следующим условиям:

1)

Если P1 придерживается своей оптимальной стратегии X*, то какую бы

чистую стратегию не принимал второй игрок P2, P1 получит выигрыш не меньше чем цена игры v.

2)

Если P2 придерживается своей оптимальной стратегии Y*, то какую бы чистую стратегию не применял второй игрок P1, то P2 проиграет не более чем цена игры v.

Теорема 1. Если игрок P1 придерживается своей оптимальной стратегии X*,

а P2 придерживается своей оптимальной стратегии Y*, то.

Теорема 2. Любая матричная игра имеет решение в смешанных стратегиях.


3.Решение матричной игры в чистых стратегиях

Рассмотрим матричную игру с игроками P1 и P2 и платежной матрицей

1) Перед игроком P1 стоит задача выбора чистой стратегии, в результате применения которой он получит максимально возможный гарантированный

выигрыш. Если игрок P1 выбрал стратегию , то его выигрышем может быть один из выигрышей , расположенный в i-ой строке платежной

матрицы, в зависимости от выбранной стратегии игроком P2. Предполагая поведение игрока P1 крайне осмысленным, необходимо считать, что игрок P2 сыграет наилучшим для себя образом и на выбор игроком P1 стратегии Xi выберет ту стратегию Yj, при которой выигрыш игрока P1 окажется минимальным.

Обозначим минимальный среди выигрышей через αi:

, (αi –показатель эффективности стратегии Xi).

Продолжая действовать разумно, игрок P1 должен выбрать ту стратегию,

которая максимизирует показатель эффективности, т.е. для которой число αi максимально.

Обозначим:

Число α называется нижней ценой игры в чистых стратегиях, а стратегия

Xi0, которая максимизирует показатель эффективности αi называется максиминной стратегией игрока P1.

Таким образом, если игрок P1 в игре будет следовать максиминной стратегии, то ему при любой игре противника P2 гарантирован выигрыш в чистых стратегиях, не меньший α.

2) Рассмотрим игру с точки зрения игрока P2, который стремиться минимизировать выигрыш игрока P1. Если P2 выберет стратегию , то выигрышем игрока P1 может быть один из выигрышей . Но так как игрок P2 предполагает, что игрок P1 играет наилучшим для себя образом, то выигрышем игрока P1 будет максимальное из этих чисел, обозначим βj:

(βj –показатель неэффективности стратегии Yj).

Таким образом, для любой стратегии Yj игрока P2 наибольший его проигрыш равен βj. В интересах игрока P2 выбрать стратегию с минимальным показателем неэффективности. Наименьшее из чисел βj обозначим β:

Число β называется верхней ценой игры в чистых стратегиях, а стратегия Yj0, которая максимизирует показатель неэффективности βj называется минимаксной стратегией игрока P2.

Теорема 3. Для элементов платежной матрицы имеют место неравенства:

и, следовательно, нижняя цена игры не больше ее верхней цены в чистых стратегиях:.

Пример. Найти решение игры, заданной платежной матрицей.

Решение:

Решим игру. Пусть – оптимальная стратегия первого игрока, – оптимальная стратегия второго игрока, v – цена игры.

Рассмотрим матрицу

min

max(-1,-2,4)=4=

max 6 7 4 10

min (6,7,5,10)=5=

- нижняя цена игры.

- верхняя цена игры.

- максиминная стратегия, - минимаксная стратегия

Если то элемент называется седловым элементом матрицы

A=

Теорема 4. (о разрешимости матричной игры в чистых стратегиях) Если платежная матрица A имеет седловой элемент , то матричная игра имеет решение в чистых стратегиях, при этом оптимальной стратегий первого игрока является Xi0 чистая стратегия, а для второго – Yj0 чистая стратегия, а цена игры v = .

Пример. Найти решение игры, заданной платежной матрицей A=

Решение:

Решим игру. Пусть -оптимальная стратегия первого игрока, - оптимальная стратегия второго игрока, v – цена игры.

Рассмотримматрицу

min

max 2 3

v==2 цена игры v = 2 , существует седловой элемент =, тогда решение в чистых стратегиях имеет вид:

оптимальная стратегия первого игрока:

оптимальная стратегия второго игрока:

Ответ: оптимальные стратегии игроков ; , цена игры v =2 .


4.Принцип доминирования

Рассмотрим игру с платежной матрицей

A=.

Если ,то говорят, что j-ая строка доминируется i-ой строкой, при этом i-ая строка называется доминирующей для первого игрока P1; j-ая строка – доминируемой строкой для P1.

Если , то говорят, что i-ый столбец доминируется j-ым столбцом, при этом j-ый столбец называется доминирующим для второго игрока P2; i-ый столбец – доминируемый для P2. Доминируемую для игрока P1 строку и доминируемый для P2 столбец можно вычеркнуть (удалить).

Пример. Упростить платежную матрицу A=, используя принцип доминирования.

Решение.

1 способ: , т.к. - доминирующая строка, -

доминируемая строка (1)

2 способ:, (1)


5.Решение матричной игры 2×2 в смешанных стратегиях

Решить игру с платежной матрицей

Платежная функция

Решить игру с платежной матрицей

Положим . Тогда

. Тогда

Если - оптимальная стратегия первого игрока, то по определению

решения матричной игры

Если игра с нулевой суммой, то (-цена игры).

Решая систему, получим .

Аналогично для второго игрока:

Тогда

Тогда

Если - оптимальная стратегия второго игрока.

Если игра с нулевой суммой, то (-цена игры).

Решая систему, получим .

Пример. Найти решение игры заданной платежной матрицей A= .

Решение:

Решим игру. Пусть - оптимальная стратегия первого игрока, - оптимальная стратегия второго игрока,-цена игры. Тогда оптимальные стратегии игроков и цену игры можно найти, решив системы:

Ответ: оптимальные стратегии игроков , цена игры .

Геометрическое решение игры
1.Решение игр с платежной матрицей 2×n

Решить игру с платежной матрицей A=

Алгоритм:

1) Через концы горизонтального отрезка [0;1] провести два перпендикуляра к нему: левый и правый. Каждой точке отрезка [0;1] будем ставить некоторую смешанную стратегию (x;1− x).

2) На левом перпендикуляре от точки 0 отложить элементы . На правом перпендикуляре от точки 1 отложить элементы .

Замечание. Масштабы на левом и правом перпендикулярах должны быть

одинаковы, не обязательно совпадающие с масштабом горизонтального отрезка [0;1].

3) Соединить отрезками элементы .

4) Выделить нижнюю огибающую всех построенных отрезков, и найти максимальную точку (точки). Пусть точка является пересечением отрезков и . Тогда оптимальную стратегию можно найти при помощи матрицы .

Решить игру с платежной матрицей A= графически.

Решение:

1. Через концы горизонтального отрезка [0;1] проведем 2 перпендикуляра к нему. Каждой точке отрезка [0;1] будем ставить смешанную стратегию (x; 1− x).

2. На левом перпендикуляре от точки 0 отложить элементы 2, 3, 11. На правом перпендикуляре от точки 1 отложить элементы 7, 5, 2.

3. Соединить отрезками элементы 2 и 7, 3 и 5, 11 и 2.

4. Выделим нижнюю огибающую всех построенных отрезков, и найдем

максимальную точку. Точка является пересечением отрезков [3;5] и [11;2]. Тогда оптимальную стратегию можно найти при помощи матрицы .

Решим игру с платежной матрицей .

Оптимальные стратегии игроков и цену игры можно найти, решив системы:

Ответ: оптимальные стратегии игроков оптимальные стратегии игроков , цена игры


2.Решение игр с платежной матрицей m×2

Решить игру с платежной матрицей A=.

Алгоритм:

1) Через концы горизонтального отрезка [0;1] провести два перпендикуляра к нему: левый и правый. Каждой точке отрезка [0;1] будем ставить некоторую смешанную стратегию (y;1− y).

2) На левом перпендикуляре от точки 0 отложить элементы . На правом перпендикуляре от точки 1 отложить элементы .

3) Соединить отрезками элементы .

4) Выделить верхнюю огибающую всех построенных отрезков, и найти минимальную точку (точки). Пусть точка является пересечением отрезков Тогда оптимальную стратегию можно найти при помощи матрицы .

Пример. Решить игру с платежной матрицей A=.

Решение:

Решим графическим методом.

1. Через концы горизонтального отрезка [0;1] проведем 2 перпендикуляра к нему. Каждой точке отрезка [0;1] будем ставить смешанную стратегию (y; 1− y).

2. На левом перпендикуляре от точки 0 отложить элементы 6, 4, 2, 1. На правом перпендикуляре от точки 1 отложить элементы 5, 6, 7, 8.

3. Соединить отрезками элементы 6 и 5, 4 и 6, 2 и 7, 1 и 8.

4. Выделим верхнюю огибающую всех построенных отрезков, и найдем минимальную точку. Точка является пересечением отрезков [6;5] и [1;8]. Тогда оптимальную стратегию можно найти при помощи матрицы .

Решим игру с платежной матрицей

Ответ: оптимальные стратегии игроков оптимальные стратегии игроков , цена игры


Практическая Часть

1. Решить Систему

1.1 По формулам Крамера

Решение.

1)Составим определитель из коэффициентов стоящих при неизвестных в системе.

2)Тогда по теореме Крамера:

3)Проверка:

Ответ:

1.2 Методом Гаусса

Решение.

1)Составим расширенную матрицу системы:

2)Преобразим расширенную матрицу к ступенчатому виду:

3)Расширенная приведена к расширенному виду. Получили следующую систему уравнений:

Ответ:

4. Решить транспортную задачу, заданную таблицей . Спланировать перевозки так, чтобы общая их стоимость была минимальной.

Пункт отправленияВ1В2В3B4В5Запасы, аi (тонн)
А11481753120
А221107116180
А335849230
Потребности, bj (тонн)70120105125110530

5. Распределить а=100 единиц средств по четырём предприятиям с целью получения максимальной суммарной прибыли.

xg1g2g3g4
00000
2018598172
4094396664
60521159881
8014367139140
100111116126133

Решение.

1)Условная оптимизация.

1.1)Пусть k=4, тогда

020406080100
0000
20727220
40646440
60818160
8014014080
100133133100

1.2) Пусть k=3

020406080100
00+000
200+7281+08120
400+6481+7266+015320
600+8181+6466+7298+014520
800+14081+8166+6498+72139+017060
1000+13381+14066+8198+64139+72126+022120

1.3)Пусть k=2

020406080100
00+000
200+8159+0810
400+15359+8139+01530
600+14559+15339+81115+021220
800+17059+14539+153115+8167+020420
1000+22159+17039+145115+15367+81116+026860

1.4)Пусть k=1

020406080100
00+000
200+8118+0810
400+15318+8194+01530
600+21218+15394+8152+02120
800+20418+21294+15352+81143+024740
1000+26818+20494+21252+153143+81111+030640

2) Безусловная оптимизация

2.1)

Прибыль: 306

Так как

2.2)

2.3)

2.4)

Ответ:


Заключение

На основании проведенного исследования можно сделать следующие выводы:

· Теория игр является очень сложной областью знания. При обращении к ней надо соблюдать осторожность и четко знать границы применения.

· Теория игр пытается предсказать результат на основе интерактивных моделей, в которых решения каждой стороны влияют на решения других сторон.

· Смысл «игры» здесь является следующим: действие со стороны одного игрока приводит к действиям со стороны других.

· Теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы.

Графический метод является одним из основных методов решения задач теории игр. Главной особенностью этого метода является графической изображение задачи. Именно эта особенность и делает этот метод наиболее простым для восприятия человеком задачи, которую ему нужно решить.

Литература

1.Просветов Г. И. Математические методы в экономике: Учебно-методическое

пособие. – М.: Изд-во РДЛ, 2004.

2. Бережная Е. В., Бережной В. И. Математические методы моделирования

экономических систем: Учеб пособие. – М.: Финансы и статистика, 2003.

3. Экономико-математическое моделирование. / Под ред. И. Н. Дрогобыцкого. –

М.: Изд-во «Экзамен», 2004.

4. Гончарова Г. А., Молчалин А. А. Элементы дискретной математики: Учебное

пособие. – М.: ФОРУМ: ИНФРА-М, 2004.

5. Высшая математика для экономистов: Учебник / Под ред Н. Ш. Кремера –

М.: ЮНИТИ, 2002.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно