Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Випадкова величина

Тип Реферат
Предмет Математика
Просмотров
494
Размер файла
139 б
Поделиться

Ознакомительный фрагмент работы:

Випадкова величина

ТЕМА
ВИПАДКОВА ВЕЛИЧИНА

1 Випадкова величина. Функція розподілу випадкової величини

Зіставимо кожну елементарну подію конкретного випробування з деяким числом. Наприклад, розглянемо випробування, що полягає в підкиданні монети. Маємо простір елементарних подій – множину з двох можливих рівно ймовірних наслідків випробування: w1 – випадання "решки" та w2 – випадання герба. Введемо до розгляду функцію x= f(w), що визначається за формулами: f(w1)=0, f(w2)=1. Це – числова функція (випадкова величина), яка залежить від випадку. Позначимо її через :

Для значень, яких у результаті випробувань може рівно ймовірно набувати функція , застосуємо символи та . Відповідно з нашою угодою, вони дорівнюють

і

У загальному випадку задовільної випадкової величини позначатимемо її однією з грецьких літер x,h,..., а значення, яких вона набуває літерами латинської абетки: х, y,..... Відповідність між цими значеннями та ймовірностями, з якими їх набуває така функція , зручно задати у вигляді табл. 1, що називається законом розподілу дискретної випадкової величини:

Таблиця 1

...

...

У випадку зазначеної конкретної випадкової величини, пов’язаної з випадінням сторін підкинутої монети, табл. 1 конкретизується у вигляді табл. 2:

Таблиця 2

0

1

1/2

1/2

Цю закономірність можна також наочно представити на площині xOy, розмістивши на горизонтальній осі значення і , а на вертикальній осі, що доцільно було перемістити з її традиційного положення – відповідні їм ймовірності (рис. 1). При цьому графік функції складається тільки з двох точок (,) і (,). В інших точках горизонтальної осі функція взагалі принципово не визначена.

Ще більш наочно закон розподілу дискретної випадкової величини зображається специфічною функцією

що називається функцією розподілу випадкової величини .

Рисунок 1

У відповідності з її визначенням, вона дає в точці x ймовірність того, що випадкова величина розташована на осі Ox зліва від цієї точки x. Зокрема, для випадкової величини, заданої законом розподілу в табл. 2, ця функція має складний вигляд із різними представленнями на різних інтервалах

На рис. 2 наведено її графік з двома неусувними розривами 1-го роду.

Рисунок 2

Розглянемо ще один приклад введення випадкової величини. Нехай є мішень – круг радіуса а, влучення до якого гарантовано. Як випадкову величину, що позначимо як , візьмемо відстань від центра мішені до точки влучення. Ймовірність того, що ця випадкова величина набуває різних значень r від нуля до а, обчислюється за формулою геометричної ймовірност:

При цьому функція розподілу

графік якої зображено на рис. 3, має вигляд

Рисунок 3

Модифікуємо попередній приклад: нехай всередині круга радіуса а, влучення до якого гарантовано, проведено два концентричні кола (рис. 4) з радіусами a/3 і 2a/ В залежності від відстані точки влучення від центра мішені стрілець одержує 10, 5 чи 1 бал, відповідно.

Рисунок 4

За випадкову величину, що позначимо як , візьмемо тепер кількість очок, набраних при пострілі по мішені. Її можливі значення: 10, 5, 1. Обчислимо ймовірності випадків прийняття цих значень величиною


,

,

При цьому закон розподілу випадкової величини має вигляд табл. 3:

Таблиця 3

1

5

10

5/9

1/3

1/9

За цим законом розподілу випадкової величини знаходимо функцію її розподілу та будуємо її графік (рис. 5).

Рисунок 5


Властивості функції розподілу:

1. F(x) – неубутна функція. Дійсно, якщо x1<x2 (рис. 6).

Рисунок 6

F(x2)=P(x<x2)=P(x<x1)+P(x1<x<x2)>P(x<x1)=F(x1); F(x1)<F(x2);

2. F(+¥)=1; F(-¥)=0; F(+¥)=P(x<¥)=1;

P(-¥<x<¥)=1; F(-¥)=0;

P(a£x<b)=P(x<b) - P(x<a)=Fx(b) - Fx(a).

Якщо функція розподілу в деякій точці x=а має неусувний розрив 1-го роду – стрибок на величину р, (рис. 7) то Р(x=а)=р.

Рисунок 7

Дійсно, розглянемо [а, b), b® a+0.

P(x=а)=.

Найбільш важливими типами випадкових величин є дискретні і неперервні випадкові величини, які будуть розглянуті більш докладно.


2 Дискретна випадкова величина

Випадкова величина називається дискретною, якщо її можливі значення можна перенумерувати.

Нехай х12,…,хn – можливі значення дискретної випадкової величини в порядку зростання.

Випадкові події [x=x1], [x=x2], …[x=xn] утворять повну систему елементарних подій. При цьому

,

Закон розподілу дискретної випадкової величини можна задати таблицею (табл. 1) чи геометрично – точками на площині (xi, pi); або ламаною, що з'єднує ці точки та називається багатокутником розподілу (рис. 8):

Рисунок 8

Цьому закону розподілу є відповідною функція розподілу


Fx(x)=P(x<x)=

або

де

Її графік наведено на рис. 9

Рисунок 9

Як видно з рис. 9, функція розподілу дискретної випадкової величини є кусково неперервною. У точці хi вона зростає на величину . При цьому

.

3 Найважливіші закони розподілу дискретних випадкових величин

Біноміальний розподіл. Розглядається серія з n випробувань, у кожному з яких подія А відбувається або не відбувається. Ймовірність появи події А в кожному випробуванні постійна і не залежить від результатів інших випробувань. Це схема Бернуллі:

Р(А)=р; .

Як випадкову величину, яку позначимо , розглянемо кількість появ події А у n випробуваннях. Не важко перевірити, що ймовірність появи події визначається формулою Бернуллі у вигляді

; (1)

де – кількість сполучень з елементів по (1).

Відповідний цїй формулі закон розподілу випадкової величини називається біноміальним, тому що його коефіцієнти збігаються з коефіцієнтами членів розкладання бінома Ньютона (p+q)n (табл. 4).

Таблиця 4

xn

0

1

k

n

pn

qn

npqn-1

pn

Розподіл Пуассона. Якщо в біноміальному розподілі випадкової величини кількість випробувань і наслідків дуже велика, знаходження ймовірностей за формулою Бернуллі (1) стає обтяжливим у зв’язку з необхідністю обчислення факторіалів великого порядку. У цьому випадку було отримано наслідки формули Бернуллі, один з яких полягає у наступному.

Нехай кількість випробувань необмежено зростає, але так, щоб її добуток на ймовірність появи події A в кожному випробуванні, тобто , залишався скінченою величиною порядку одиниці. Це передбачає дуже мале значення ймовірності , отже розглядаються дуже рідкі події та дуже довгі серії випробувань. При формалізації відзначених умов у формулі Бернуллі (1) можна перейти до границі

або остаточно отримати формулу Пуассона для ймовірності появи разів дуже рідкої події A у практично нескінченних випробуваннях

Розподіл випадкової величина за цією формулою називається законом Пуассона (законом рідкісних подій). Число l називається параметром розподілу. Цей закон можна подати у вигляді:

Таблиця 5

x

0

1

k

p

e-l

le-l

Розглянемо типову задачу, що приводить до розподілу Пуассона. Нехай подія А означає відмову складного пристрою протягом малого проміжку часу. Причиною відмови є вихід з ладу будь-якої деталі. Режим роботи пристрою не змінюється з часом, відмова окремих деталей відбувається незалежно одна від одної, причому за одиницю часу "в середньому" відбувається l відмовлень.

При цих допущеннях з великим ступенем точності виконуються такі умови:

1. Ймовірність появи відмови на проміжку часу (0, Т) така сама, як і на задовільному проміжку довжиною T (t,t+T).

2. Появи відмовлень на проміжках часу, що не перекриваються, незалежні.

Ймовірність появи відмовлення за нескінченно малий проміжок часу визначається за формулою:

р(А)=l Dt+o(Dt), Dt®0.

4. Імовірність появи більше однієї відмови є о(Dt), Dt®0.

Розіб'ємо інтервал (t,t+T) на n рівних частин .

Розглядатимемо реєстрацію відмови як окреме випробування

При цьому приходимо до розподілу Пуассона для кількості відмовлень за час Т

Геометричний закон розподілу. Проводиться серія випробувань до першої появи події А. Ймовірність появи події А в кожному випробуванні дорівнює р і не залежить від інших випробувань.

Як випадкову величину розглядатимемо кількість проведених випробувань, необхідних для першої появи події А. Очевидно, що закон розподілу цієї випадкової величини можна подати таблицею:

Таблиця 6

x

1

2

3

k

P

P

qp

q2p

qk-1p


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
Мпгу
Быстро, четко, исправлены поправки. Насчет качества работы узнаю после оценки
star star star star star
ГАПОУ МО МонПК
Работа выполнена быстро, и очень хорошо. Очень рекомендую Алину как исполнителя для ваших ...
star star star star star
МИП
Огромное спасибо, Виктория. Все выполнено быстро, качественно, всегда на связи. Уточнения ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную работу по Теоретической механике. М-08023

Контрольная, Теоретическая механика

Срок сдачи к 30 дек.

только что

Практическое задание

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

1 минуту назад

Лабораторная

Лабораторная, технология конструкционных материалов

Срок сдачи к 1 янв.

3 минуты назад

Тестирование по психологии

Тест дистанционно, Психология и педагогика

Срок сдачи к 31 дек.

3 минуты назад

создание ролика

Другое, Право

Срок сдачи к 25 дек.

4 минуты назад

Контрольная, Логика

Контрольная, Логика

Срок сдачи к 27 дек.

4 минуты назад

1. решить файл перечень заданий exel

Решение задач, Информационные технологии

Срок сдачи к 28 дек.

4 минуты назад

Пересечение криволинейных поверхностей плоскостью треугольника АВС

Решение задач, Начертательная геометрия

Срок сдачи к 10 янв.

6 минут назад

Решить задачу

Решение задач, Теоретическая механика

Срок сдачи к 26 дек.

7 минут назад

выполнить задания

Решение задач, Актуальные проблемы права интеллектуального собственности

Срок сдачи к 28 янв.

8 минут назад

Химия

Презентация, Химия

Срок сдачи к 25 дек.

8 минут назад

Нужен визуалмейкер для моих фоток

Другое, Фотография

Срок сдачи к 18 февр.

9 минут назад

Органихзация рекламного агенства

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

10 минут назад

Тема: имидж современного руководителя

Курсовая, менеджмент сфере культуры и искусства

Срок сдачи к 26 дек.

11 минут назад

Практика в уголовном розыске

Отчет по практике, Уголовный процесс

Срок сдачи к 26 дек.

11 минут назад

Нужно решить 30 тестов по экономике

Тест дистанционно, Экономика

Срок сдачи к 5 февр.

11 минут назад

президент рф

Реферат, Основы российской государственности

Срок сдачи к 25 дек.

11 минут назад

Практическая работа по дисциплине «Информационное обеспечение логистических процессов»

Другое, Операционная деятельность в логистике

Срок сдачи к 26 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно