Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Формула Бернулли, Пуассона. Коэффициент корреляции. Уравнение регрессии

Тип Реферат
Предмет Математика
Просмотров
832
Размер файла
127 б
Поделиться

Ознакомительный фрагмент работы:

Формула Бернулли, Пуассона. Коэффициент корреляции. Уравнение регрессии

Контрольная работа

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

1. В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.

Решение

Пусть гипотезы и состоят в том что:

- Из первой урны извлекли черный шар, вероятность

- извлекли белый шар, вероятность

Гипотезы несовместны и сумма их вероятностей равна 1. Значит, гипотезы образуют полную группу.

Пусть событие А состоит в том, что из второй урны извлекут черный шар. Если происходит событие Н1 то во второй урне станет 6+1=7 черных и 4 белых шара. В этом случае вероятность наступления А равна


Если же происходит событие Н2 то во второй урне станет 6 черных и 4+1=5 белых шаров. Вероятность наступления А


По формуле полной вероятности вычислим вероятность события А (из второй урны вынут черный шар)


Ответ: 0,60

5. Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете.

Решение

Для каждого вопроса вероятность того что студент его знает, одинакова


Найдем вероятность того, что в двух испытаниях событие А (студент знает вопрос) произойдет 2 раза по формуле Бернулли


Ответ: 0,64

11. Среднее число вызовов, поступающих на АТС в 1 мин., равно четырем. Найти вероятность того, что за 2 мин. поступит: 1) 6 вызовов; 2) менее шести вызовов; 3) не менее шести вызовов. Предполагается, что поток вызовов – простейший.

Решение

Интенсивность потока

Время t=2


По формуле Пуассона, вероятность того что за время t поступит k вызовов, равна

1)

2)



3)

15. Среднее число самолетов, прибывающих в аэропорт за 1 мин, равно трем. Найти вероятность того, что за 2 мин прибудут: 1) 4 самолета; 2) менее четырех самолетов; 3) не менее четырех самолетов.


По формуле Пуассона, вероятность того что за время t поступит k вызовов, равна

1)


2)

3)

21-30. Для дискретной случайной величины Х, определенной в задаче:

1).написать ряд распределения; 2).построить многоугольник распределения;

3).вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение; 4).построить интегральную функцию распределения.

21. Вероятность того, что в библиотеке необходимая книга свободна, равна 0,3. В городе 4 библиотеки. СВ Х – число библиотек, которые посетит студент в поисках необходимой книги.

Решение

Случай ная величина Х может принимать такие значения

Х=1 – если студент найдет книгу в первой же библиотеке

Х=2 –если в первой не найдет а найдет во второй

Х=3- если не найдет в первой и второй а найдет в третьей

Х=4- если не найдет ни в первой, ни во второй, ни в третьей.

Найдем их вероятности.

Пусть событие А состоит в том что книга найдена. Р(А)=0,3.


Не найдена – вероятность противоположного события равна

1)Запишем ряд распределения Х

Х1234
Р0,30,210,1470,343

2) См. рисунок 1(21)

3) Математическое ожидание дискретной случайной величины

Дисперсия



Среднеквадратическое отклонение

4) Х – дискретная случайная величина. Найдем функцию распределения F(x)=P{x<X}- кусочно-постоянная функция

25. Три плавбазы вышли на путину. Вероятность того, что первая из них перевыполнит план равна 0,9; вторая – 0,8 и третья – 0,85. СВ Х – число баз, перевыполнивших план.

Случай ная величина Х может принимать такие значения

Х=0 если ни первая ни вторая ни третья базы не перевыполнили план

Х=1 – это может произойти если 1-я база перевыполнила план, а вторая и третья нет, или вторая перевыполнила а первая и третья нет, или третья первыполнила а первая и вторая нет.

Х=2 –если первая и вторая базы перевыполнили план а третья нет, или вторая и третья перевыполнили а первая нет, или первая и третья перевыполнили а вторая нет.

Х=3- если все три базы перевыполнили план

.

Найдем их вероятности.

По формулам суммы и произведения вероятностей, по формуле вероятности

1)Запишем ряд распределения Х

Х0123
Р0,0030,0560,3290,612

2) См. рисунок 1(25)

3) Математическое ожидание дискретной случайной величины

Дисперсия


Среднеквадратическое отклонение

4) Х – дискретная случайная величина. Найдем функцию распределения F(x)=P{x<X}- кусочно-постоянная функция

31-40. Случайная величина Х задана плотностью распределения ¦(х). Определить: а) параметр А; б) функцию распределения вероятностей F(х); в) математическое ожидание МХ; г) дисперсию ДХ; д) вероятность того, что в n независимых испытаниях случайная величина Х попадет ровно m раз в интервал (a, b). Построить графики функций ¦(х), F(х).

31.

¦(х)=

n = 4, m = 3, a = 0, b= 2

Решение

а)Для плотности распределения непрерывной случайной величины должно выполняться условие


В нашем случае

б) Функция распределения вероятностей


в) Математическое ожидание


г) Дисперсия


д) При каждом независимом испытании вероятность попадания в интервал равна


По формуле Бернулли вероятность того что случайная величина в n=4 испытаниях m=3 раза попадет в интервал равна

е)Графики смотри рис.2(31)

35.

¦(х)=

n=4, m=2, a=-1/3 А, b=5/4 А.

а)Для плотности распределения непрерывной случайной величины должно выполняться условие


В нашем случае


б) Функция распределения вероятностей


в) Математическое ожидание


г) Дисперсия


д) При каждом независимом испытании вероятность попадания в интервал равна



По формуле Бернулли вероятность того что случайная величина в n=4 испытаниях m=2 раза попадет в интервал равна

е)Графики смотри рис.2(35)

41-50. Дана выборка значений признака Х. Требуется:

1) построить статическую совокупность;

2) построить гистограмму частот;

3) найти точечные оценки генеральной средней, генеральной

дисперсии и генерального среднего квадратического отклонения;

4) найти доверительный интервал для неизвестного математического

ожидания;

5) проверить нулевую гипотезу о нормальном законе распределения

количественного признака Х генеральной совокупности.

41.

38, 51, 57, 64, 76, 92, 89, 19, 35, 60, 22, 41, 44, 48, 60, 44, 67, 80, 86,

57, 25, 83, 73, 70, 70, 70, 64, 60, 60, 64, 57, 54, 57, 54, 32, 86, 86, 80,

76, 60, 76, 70, 70, 67, 67, 64, 64, 60, 28, 67, 41, 41, 51, 48, 44, 80, 80,

76, 73, 51, 67, 60, 32, 41, 41, 54, 57, 60, 67, 73, 73, 76, 57, 67, 73, 73,

64, 60, 54, 57.

1) Объем выборки n=80

Наименьшее значение признака Х

MIN:19

Наибольшее значение

MAX:92

Определим оптимальное число интервалов разбиения по формуле


Число интервалов:7,00
Шаг интервала h=(92-19)/7=10,43

Составим интервальный вариационный ряд

Интервал

Колич. Элементов

m(i)

Относит. Частоты

m(i)/n

Середины интервалов

19,0029,4340,0524,21
29,4339,8640,0534,64
39,8650,29100,1345,07
50,2960,71230,2955,50
60,7171,14180,2365,93
71,1481,57150,1976,36
81,5792,0060,0886,79

2)Построим гистограмму частот, откладывая по оси Х границы интервалов а по оси У значения


3)Точечной оценкой математического ожидания является эмпирическая средняя


Точечной оценкой генеральной дисперсии является дисперсия эмпирическая


Точечная оценка генерального среднего квадратического отклонения

Исправленное среднее квадратическое отклонение


4)Доверительный интервал для неизвестного математического ожидания

имеет вид (при надежности p=0.95)

Доверительный интервал для оценки математического ожидания имеет вид


Где - такое число, для которого


По таблицам значений функции Лапласа находим =1,96

Доверительный интервал имеет вид

6)
Предположим, что количественный признак Х имеет нормальное распределение и вычислим теоретические частоты.

Параметры распределения


Вероятность попадания в интервал для нормально распределенной случайной величины


Для более точного применения критерия Пирсона требуется чтобы теоретические частоты были>5. Это не выполняется для интервала 1, который объединяем с соседним. Теперь количество интервалов равно 6. Найдем величину уклонения


По таблицам для критерия Пирсона найдем критическую точку для количества степеней свободы k=6-1-2=3 и q=0.05


Отсюда следует, что различия между теоретическими и опытными частотами случайны и гипотезу о нормальном распределении следует принять.


45.

24, 99, 28, 68, 72, 81, 85, 93, 29, 36, 32, 48, 72, 52, 62, 60, 40, 85, 68, 76,

64, 52, 60, 76, 56, 60, 64, 68, 72, 76, 72, 68, 72, 85, 68, 72, 73, 98, 44, 51,

48, 52, 97, 56, 84, 81, 97, 62, 64, 56, 93, 86, 69, 89, 64, 81, 56, 72, 72, 81,

68, 76, 85, 70, 81, 72, 68, 71, 72, 93, 76, 92, 72, 93, 65, 55, 84, 36, 48, 52.

2) Объем выборки n=80

Наименьшее значение признака Х

MIN:24

Наибольшее значение

MAX:99

Определим оптимальное число интервалов разбиения по формуле


Число интервалов:7,00
Шаг интервала h=(99-24)/7=10,71

Составим интервальный вариационный ряд

Интервальный рядКолич. Элементов m(i)

Относит. Частоты

m(i)/n

Середины интервалов

24,0034,7140,0529,36
34,7145,4340,0540,07
45,4356,14130,1650,79
56,1466,86100,1361,50
66,8677,57270,3472,21
77,5788,29120,1582,93
88,2999,00100,1393,64

2)Построим гистограмму частот, откладывая по оси Х границы интервалов а по оси У значения


3)Точечной оценкой математического ожидания является эмпирическая средняя


Точечной оценкой генеральной дисперсии является дисперсия эмпирическая


Точечная оценка генерального среднего квадратического отклонения

Исправленное среднее квадратическое отклонение


4)Доверительный интервал для неизвестного математического ожидания

имеет вид (при надежности p=0.95)

Доверительный интервал для оценки математического ожидания имеет вид


Где - такое число, для которого


По таблицам значений функции Лапласа находим =1,96

Доверительный интервал имеет вид

7)
Предположим, что количественный признак Х имеет нормальное распределение и вычислим теоретические частоты.

Параметры распределения


Вероятность попадания в интервал для нормально распределенной случайной величины


8)


Для более точного применения критерия Пирсона требуется чтобы теоретические частоты были>5. Это не выполняется для интервала 1, который объединяем с соседним. Теперь количество интервалов равно 6. Найдем величину уклонения

По таблицам для критерия Пирсона найдем критическую точку для количества степеней свободы k=6-1-2=3 и q=0.05


Отсюда следует, что различия между теоретическими и опытными частотами значимы и гипотезу о нормальном распределении следует отклонить..


51-60.

Для установления корреляционной зависимости между величинами

X и Y (где Y- случайная величина, X- неслучайная величина) проведены

эксперименты, результаты которых представлены в таблице.

Требуется: 1. Найти условные средние и построить эмпирическую линию

регрессии Y по X (ломаную). 2. Найти уравнение регрессии Y по X

методом наименьших квадратов, принимая в качестве сглаживающей

линии параболу затем построить ее на одном чертеже

с эмпирической линией регрессии. 3. Оценить тесноту корреляционной

зависимости Y по X. 4. Проверить адекватность уравнения регрессии Y по X.

51.

1020304050

212

220

251

270

292

258

258

285

314

325

282

290

325

326

343

316

330

334

361

370

370

330

350

375

380

Решение

Найдем условные средние по у


Эмпирическая ломаная регрессии см рис 3(51)

2. Для определения неизвестных параметров a,b,c требуется решить

систему уравнений


Заполним вспомогательную таблицу

Y()
110245245010010001000024500246,64
22028857604008000160000115200284,26
330313,2939690027000810000281880315,88
440342,2136881600640002560000547520341,5
5503611805025001250006250000902500361,12
1501549,449344550022500097900001871600

Получаем систему уравнений


Решение системы: a=-0.03; b=4.662; c=203.02

Получаем уравнение кривой


Подставляя в уравнение поочередно значения х, получаем соответствующие точки параболы, которые и наносим на график.(рис 3(51))

3. Найдем значение коэффициента корреляции


Отсюда можно сделать вывод что зависимость прямая сильная., тк

коэффициент близок к 1

55.

12345

0.27

0.25

0.21

0.33

0.24

0.23

0.25

0.30

0.31

0.37

0.31

0.27

0.26

0.24

0.22

0.32

0.29

0.33

0.32

0.33

0.81

0.65

0.50

0.63

0.60

Решение

Найдем условные средние по у


Эмпирическая ломаная регрессии см рис 3(51)

2. Для определения неизвестных параметров a,b,c требуется решить

систему уравнений


Заполним вспомогательную таблицу

Y()
110.260.261110.260.294
220.2920.58448161.1680.224
330.260.78927812.340.254
440.3181.27216642565.0880.384
550.6383.192512562515.950.614
151.7686.0865522597924.806

Получаем систему уравнений


Решая систему находим a=0.05,b=-0.22,c=0.464


Подставляя в уравнение поочередно значения х, получаем

соответствующие точки параболы, которые и наносим на график(рис.3(55).)

И в таблицу.(последний столбец)

3. Найдем значение коэффициента корреляции


Отсюда можно сделать вывод что зависимость прямая умеренная.

61-70. Найти выборочное уравнение прямой регрессии У на Х по данной корреляционной таблице.

61.

Y

X
4914192429

10

23________5
20__73______10
30____2502__54
40____1106__17
50______47314
210664153n=100

Выберем в качестве ложных нулей варианты по х и у с наибольшими частотами.

Перейдем к условным вариантам


Получим таблицу в условных вариантах.

V

U
-3-2-1012

-2

23________5
-1__73______10
0____2502__54
1____1106__17
2______47314
210664153n=100

Найдем выборочные средние

Найдем вспомогательные величины


Вычислим коэффициент корреляции


Перейдем теперь к исходным вариантам и составим уравнение регрессии


Уравнение регрессии


65.

Y

X
101520253035
642________6
12__62______8
18____5405__50
24____287__17
30______47819
48952198n=100

Выберем в качестве ложных нулей варианты по х и у с наибольшими частотами.

Перейдем к условным вариантам


Получим таблицу в условных вариантах.

V

U
-3-2-1012

-2

42________6
-1__62______8
0____5405__50
1____287__17
2______47819
48952198n=100

Найдем выборочные средние

Найдем вспомогательные величины


Вычислим коэффициент корреляции


Перейдем теперь к исходным вариантам и составим уравнение регрессии



Уравнение регрессии


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно