Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теория вероятностей и математическая статистика

Тип Реферат
Предмет Математика
Просмотров
1327
Размер файла
150 б
Поделиться

Ознакомительный фрагмент работы:

Теория вероятностей и математическая статистика

Министерство высшего образования Украины

Национальный Технический Университет Украины

“Киевский политехнический институт”

Кафедра автоматизированных систем обработки информации и управления

К о н т р о л ь н а я р а б о т а

по дисциплине :

“ Теория вероятностей и математическая статистика”

Вариант № 24

Выполнил студент гр. ЗІС - 91

ІІI курса факультета ФИВТ

Луцько Виктор Степанович

2009г.


Задача 1

Бросаются две игральные кости. Определить вероятность того, что:

а) сумма числа очков не превосходит N;

б) произведение числа очков не превосходит N;

в) произведение числа очков делится на N.

Исходные данные: N=18.

Решение задачи:

Вероятностью случайного события А называется отношение числа равновозможных элементарных событий, благоприятствующих этому событию, к числу всех равновозможных элементарных событий пространства Е, определяемого данным испытанием.

Р(А) =m
n

где: n – число всех равновозможных элементарных событий, вытекающих из условий данного испытания;

m - число равновозможных событий, которые благоприятствуют событию А.

а) при сумме числа очков (N = 18), не превосходящих N:

n = 36;m = 36

Р(А) =36=1 ;
36

б) при произведении числа очков, не превосходящих N:

n = 28;m = 36

Р(А) =28=7» 0,778 ;
369

в) при произведении числа очков, делящихся на N:

n = 3;m = 36

Р(А) =3=1» 0,083 .
3612

Ответы:

а) Р(А) = 1 ;

б) Р(А) = 7/9 » 0,778 ;

в) Р(А) = 1/12 » 0,083.

Задача 2

Имеются изделия четырех сортов, причем число изделий i-го сорта равно =1, 2, 3, 4. Для контроля наудачу берутся т изделий. Определить вероятность того, что среди них т1 первосортных, т2, т3 и т4 второго, третьего и четвертого сорта соответственно .

Исходные данные: n1 = 3; n2 = 1; n3 = 6; n4 = 2;m1 = 2; m2 = 1; m3 = 3; m4 = 1.

Решение задачи.

1) Определяем количество способов нужной комбинации:

С¢ = Сn1m1 x Сn2m2 x Сn3m3 x Сn4m4 = С32 x С11 x С63 x С21 ;

2) Определяем количество всех возможных способов:

С¢¢ = Сn1+n2+n3+n4m1+m2+m3+m4 = С127 ;


3) Определяем вероятность Р согласно условия задачи:

Р =С32 x С11 x С63 x С21=3 х 1 х4 х 5 х 6х 2=
2 х 3
С1278 х 9 х 10 х 11 х 12
2 х 3 х 4 х 5
=3 х 5=5» 0,15
9 х 1133

Ответ: Р = 5/33 » 0,15 .

Задача 3

Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них выигрышных.

Исходные данные: n = 8; l = 3; m = 5; k = 4.

Решение задачи.

k=4
n=8

Общее число случаев, очевидно, равно Сnm , число благоприятных случаев Сkl x Сn-km-l , откуда:

Р(А) =Сkl x Сn-km-l=С43 x С8-45-3=3» 0, 4286 .
СnmС857

Ответ: Р(А) = 3/7 » 0, 4286 .

Задача 7

В круге радиуса R наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны S1 и S2. Исходные данные:R =14; S1 = 2,6; S2 = 5,6.

Решение задачи

S1
R
P(A) =S.
S2
pR2
P(A1) =S1=2,6» 0,0042246 ;
pR23,14 x 142
P(A2) =S2=5,6» 0,0090991 ;
pR23,14 x 142
P(A) =S1+ S2=2,6 + 5,6=8,2» 0,013324 .
pR23,14 x 142615,44

Ответ: Р(А) » 0,013324 .


Задача 8

В двух партиях k1 и k2 % доброкачественных изделий соответственно. Наудачу выбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них:

а) хотя бы одно бракованное;

б) два бракованных;

в) одно доброкачественное и одно бракованное?

Исходные данные: k1 = 81; k2 = 37.

Решение задачи

События А и В называются независимыми, если выполняется соотношение:

Р(А/В) = Р(А) / Р(В) .

Для любых событий А и В имеет место формула:

Р(А+В) = Р(А) + Р(В) – Р(АВ) .

Обозначения:

Событие А – выбрали бракованное изделие из 1-й партии (1 – k1) ;

Событие B – выбрали бракованное изделие из 2-й партии (1 – k2) .

События А и В – независимые.

а)Р(А+В) = Р(А) + Р(В) – Р(АВ) = (1 – k1) + (1 – k2) – (1 – k1)(1 – k2) =

= 0,19 + 0,63 – 0,19 х 0,63 » 0,82 – 0,12 » 0,70 .

б) Вероятность пересечения двух независимых событий равна произведению вероятностей этих событий:


Р(АÇВ) = Р(А) х Р(В) = (1 – k1)(1 – k2) = 0,19 х 0,63 » 0,12 .

в)Р = Р(А) х Р(В) + Р(В) х Р(А) = (1 – k1)k2 + (1 – k2)k1 =

= 0,19 х 0,37 + 0,63 x 0,81 » 0,07 + 0,51 » 0,58 .

Ответы:

а) » 0,70;

б)» 0,12;

в)» 0,58.

Задача 9

Вероятность того, что цель поражена при одном выстреле первым стрелком р1 вторым —р2 . Первый сделал n1, второй — n2 выстрелов. Определить вероятность того, что цель не поражена.

Исходные данные: p1 = 0,33; p2 = 0,52; n1 = 3; n2 = 2.

Решение задачи.

Обозначения:

А – вероятность непоражения цели при одном выстреле первым стрелком (1 – р1) ;

В – вероятность непоражения цели при одном выстреле вторым стрелком (1 – р2) ;

Р – цель не поражена в результате общего количества испытаний.

Р = (1 – р1)n1 x (1 – р2)n2 = (1 – 0,33)3 x (1 – 0,52)2 = 0,673 x 0,482» 0,30 x 0,23 » 0,069 » 0,07 .

Ответ:» 0,07 .


Задача 12

Из 1000 ламп ni принадлежат i-й партии, i=1, 2, 3, . В первой партии 6%, во второй 5%, в третьей 4% бракованных ламп. Наудачу выбирается одна лампа. Определить вероятность того, что выбранная лампа — бракованная.

Исходные данные: n1 = 350; n2 = 440.

Решение задачи

Рассмотрим три гипотезы:

Н1 – выбор лампы из первой партии;

Н2 – выбор лампы из второй партии;

Н3 – выбор лампы из третьей партии;

а также событие А – выбор бракованной лампы.

Учитывая то, что Н1, Н2, Н3 – полная группа попарно несовместимых событий, причем Р(Нi) ¹ 0, i = 1,2,3, то для любого события А имеет место равенство (формула полной вероятности):

3
Р(А) =å P(Hi) x P(A/Hi) .
i=1

Тогда:

P(H1) = 350/1000 = 7/20 ;

P(H2) = 440/1000 = 11/25 ;

P(H3) = 210/1000 = 21/100 .

Р(А) = 7/20 х 0,06 + 11/25 х 0,05 + 21/100 х 0,04 = 42/2000 + 55/2500 + 84/10000 = 514/10000 = 0,0514 .

Ответ: Р(А) = 0,0514 .


Задача 18

На каждый лотерейный билет с вероятностью p1 может выпасть крупный выигрыш, с вероятностью р2. — мелкий выигрыш и с вероятностью р3 билет может оказаться без выигрыша, . Куплено n билетов. Определить вероятность получения n1 крупных выигрышей и n2 мелких.

Исходные данные: n = 14; n1 = 5; n2 = 4;p1 = 0,25; p2 = 0,35.

Решение задачи

Для решения данной задачи используем формулу для полиномиального распределения вероятностей, т.к. события – является ли і-тый билет выигрышным (и насколько) или невыигрышным – независимы (для разных і):

Pn(m1,m2,…,mk) =n!p1m1p2m2 … pkmk .
m1! m2!…mk!

В задаче: А1 – билет оказался с крупным выигрышем;

А2 – билет оказался с мелким выигрышем;

А3 – билет оказался без выигрыша.

Р14(5,4,5) =14!х (0,25)5 х (0,35)4 х (0,4)5 =6х7х8х9х10х11х12х13х14х
5! 4! 5!2х3х4х2х3х4х5

х 0,0009765 х 0,015 х 0,01024 = 2 х 7 х 9 х 11 х 13 х 14 х 0,0009765 х 0,015 х

х 0,01024 » 0,0378.

Ответ: Р » 0,0378 .


Задача 19

Вероятность «сбоя» в работе телефонной станции при каждом вызове равна р. Поступило п вызовов. Определить вероятность m «сбоев».

Исходные данные: m = 9; N = 500; p = 0,01.

Решение задачи

q = 1 – p = 1 – 0,01 = 0,99 .

Так как n – большое число (n = N = 500), а npq » 5, т.е. npq < 9 , то применяем формулы Пуассона:

Рn(m) »ame-a , a = np .
m!

Подсчет вручную дает следующие результаты:

Рn(m) »59х1»58х1»
2х3х4х5х6х7х8х9е52х3х4х6х7х8х92,75
»390625»390625» 0,03751 .
72576 х 143,510 413 862

Но, при известных а = 5 и m = 9 результат формулы Пуассона следует брать из таблицы III, где

Рn(m) » 0,03627 .

Ответ: Рn(m) » 0,03627 .


Задача 20

Вероятность наступления некоторого события в каждом из n независимых испытаний равна р. Определить вероятность того, что число т наступлений события удовлетворяет следующему неравенству.

Варианты 22—31:

Исходные данные: n = 100; P = 0,3; k1 = - ; k2 = 40.

Решение задачи

Вероятность Рn(m) того, что в результате этих n опытов событие А произойдет m раз (наступит m успехов), определяется по формуле Бернулли:

Pn(m) = Cnmpmqn-m, m = 0,1,2,…,n(1)

где q = 1 – p – вероятность наступления противоположного события А при единичном испытании.

Совокупность чисел, определяемых формулой (1), называется биномиальным распределением вероятностей.

При больших значениях п (порядка десятков, сотен) для биномиального распределения применяют следующие приближенные формулы:

(2)

где:

(3)

где:


(4)

(5)

(6)

Формула (2) основана на локальной теореме Муавра—Лапласа, (3) — на интегральной теореме Муавра—Лапласа, (5) и (6) — на формуле Пуассона. Асимптотику Муавра—Лапласа [формулы (2) и (3)] рекомендуется применять в случае, когда npq>9. В противном случае более точные результаты дает асимптотика Пуассона [формулы (5) и (6)].

З а м е ч а н и е 1. Приближенная формула (3) остается в силе и в том случае, когда входящие в нее неравенства являются строгими.

З а м е ч а н и е 2. Вычисления по формулам (2), (3), (5), (6) выполняются с использованием таблиц I—IV соответственно (см. приложение).

В данной задаче n = 100, т.е. n – число большое.

npq = 21, следовательно npq > 9.

При этом q = 1 – p = 0,7 ;np = 30 .

Наши рассуждения приводят к тому, что данную задачу следует решать с помощью формул Муавра-Лапласа, а именно с помощью формулы (3).

Тогда:

k2 – np»40 – 30»10» 2,18 .
Ö npq4,584,58
k1 – np»0 – 30»-30» - 6,55 .
Ö npq4,584,58

Pn(m£k2) » Ф(х2) – Ф(х1) » Ф(2,18) – Ф(- 6,55) » Ф(2,18) + Ф(6,55) »

» 0,48537 + 0,5 » 0,98537 .

Ответ: Pn(m£ 40) » 0,98537 .

Задача 21

Дана плотность распределения р (х) случайной величины x. Найти параметр g, математическое ожидание Мx дисперсию Dx, функцию распределения случайной величины x вероятность выполнения неравенства х1 < x < х2

Варианты 17-24:

Исходные данные: a = -1,5; b = 1; x1 = -1; x2 = 1.

Решение.

Р(х) =íg, х Î [-1,5, 1],
0, x Ï [-1,5, 1].

Найдемg. Должно выполняться соотношение:Fx(+¥) = 1;

òp(x)dx = 1;ògdx = 1;gx1= 1;g*(1+1,5) = 1;g =1=2/5 .
-1,52,5
-1,5
1
Найдем: Мx =òх2/5 dx = 2 х21= 1/5 (1-2,25) =-1,25= -0,25 .
5 2-1,55
-1,5
1
Найдем: Dx = Мx2 – (Мx)2 =ò2/5 x2 dx – 0,0625 = 2/5x31- 0,0625 =
3-1,5
-1,5

= 2/5 (1/3 + 3,375/3) – 0,0625 = 0,4 * 1,4583 – 0,0625 = 0,5833 – 0,0625 = 0,5208 .

í0 ,x < -1,5;
x x
Найдем: Fx(x)=òp(х) dx =ògdt ,-1,5 £ x < 1;
-1,5
1 ,x ³ 1 .
xx
ògdt =gt=gx + 1,5g =2/5x + 0,6 .
-1,5-1,5

Найдем:P{-1<x<1} = Fx(1) - Fx(-1) = 1 – (-2/5 + 0,6) = 7/5 – 3/5 = 4/5 .

Ответы: 1) g = 2/5; 2) Мx = - 0,25; 3) Dx = 0,5208; 4) Fx (x) = 0,4x + 0,6; 5) P{-1<x<1} = 4/5.






Список использованной литературы

1. Феллер В. Введение в теорию вероятностей и ее приложения. В 2-х томах. Т.1: Пер.с англ. - М.: Мир, 1994. – 528 с.

2. Вентцель Е.С. Теория вероятностей: Учеб.для вузов. – 6-е изд.стер. – М.: Высш.шк., 1999. – 576 с.

3. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. Под редакцией А.А. Свешникова. – М.: Наука, 1998. – 656 с.

4. Лютикас В.С. Факультативный курс по математике: Теория вероятностей. – М.: Просвещение, 1998. – 160 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
150547
рейтинг
icon
3156
работ сдано
icon
1368
отзывов
avatar
Математика
Физика
История
icon
145688
рейтинг
icon
5939
работ сдано
icon
2681
отзывов
avatar
Химия
Экономика
Биология
icon
102026
рейтинг
icon
2067
работ сдано
icon
1289
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
58 141 оценка star star star star star
среднее 4.9 из 5
МИИГАиК
Работа выполнена крайне быстро! Запрашивал уникальность работы как минимум 75 (Алена сдела...
star star star star star
МИП
Благодарю Елену, очень хороший реферат. Она хорошо раскрыла тему, использовалась профессио...
star star star star star
ИМ.ВИТТЕ
Спасибо!!! Работа выполнена в короткий срок! Оценка высокая!!! Всем рекомендую!!!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Проект , решить задание 6 из файла

Другое, Управления профессиональным развитием государственного и муниципального служащего

Срок сдачи к 29 янв.

только что

Сделать 9 практических работ

Решение задач, Внутризоводской Транспорт

Срок сдачи к 31 янв.

только что

Контрольная работа

Контрольная, БЖД

Срок сдачи к 31 янв.

1 минуту назад

Сделать отчёт по практике

Отчет по практике, Графический Дизайнер

Срок сдачи к 28 янв.

2 минуты назад

Искусственный интеллект для жизни и учебы

Презентация, нет, информатика

Срок сдачи к 7 февр.

3 минуты назад

Участие бывших офицеров царской армии в Гражданской войне как на...

Презентация, история россии

Срок сдачи к 26 янв.

4 минуты назад
5 минут назад
5 минут назад

Заполнить таблицу

Другое, Управления профессиональным развитием государственного и муниципального служащего, государственное и

Срок сдачи к 29 янв.

5 минут назад

Контрольная, механика

Контрольная, механика

Срок сдачи к 31 янв.

5 минут назад

Выполнить таблицу

Другое, История России

Срок сдачи к 26 янв.

5 минут назад

Выполнить задание на фото

Другое, Организация технического контроля на производстве, управление качеством

Срок сдачи к 9 мар.

6 минут назад

Нужно написать выводы к 6 таблицам по финансовой теме.

Контрольная, финансы

Срок сдачи к 28 янв.

6 минут назад

Выполнить расчет

Курсовая, Проектирование фундаментов промышленного(общественного,жилого)здания, строительство

Срок сдачи к 21 февр.

6 минут назад

Проложить 2 маршрута

Другое, Транспортная логистика

Срок сдачи к 28 янв.

7 минут назад

Курсовая

Курсовая, дошкольная педагогика

Срок сдачи к 7 февр.

8 минут назад

Прошу Вас переделать курсовую работу под мой вариант

Курсовая, Теория механизмов и машин

Срок сдачи к 29 янв.

10 минут назад

Essay: "Is computer the greatest evil of our time?"

Эссе, Английский язык

Срок сдачи к 26 янв.

10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно