Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теория вероятностей

Тип Реферат
Предмет Математика
Просмотров
998
Размер файла
34 б
Поделиться

Ознакомительный фрагмент работы:

Теория вероятностей

1. Независимо друг от друга 10 чел. Садятся в поезд, содержащий 15 вагонов.

Вероятность того, что все они поедут в разных вагонах?

Р= число близких иходов = 15….14…….- 6 = 15 !-2

Число элемент. исходов 15*15*15…155 ! » 1,88 * 1е

10 раз 50

15 _____________________________________

2. В электрической цепи последовательно включены 3 элемента, работающие

независимо друг от друга. Их вер-ть отказов равны 1 49 1 .

Найти вероятность того, что тока не будет? 50 ; 50 ; 4

-- €- -

А –ток есть

Аi – i-й прибор не исправен

Р (А1) = 49 Р (А2)= 1 Р ( А3) = 3

50 ; 50 ; 4

_

Р (А)=1-Р(А) = 1-Р (А1 А2 А3 ) = 1-Р (А1) Р (А2)* Р (А3) = 1- 49 * 1- 3 = 9,753

50 50 4 10,000

____________________________________________________________________________________________

3. Вер-ть попадания хотя бы раз в мишень при 12-ти выстрелах равно 41 .

Найдите вер-ть попадания при одном выстреле? 50

Аi – успешный i – выстрел

_________

Р = 41 = 1-Р ( А1 …..А12) – не попали ни в одном случае из 12-и выстрелов =

50

__ __ _ 12 12

= 1 – Р (А1) …..Р (А12) = 1 – Р (А1) ;41 = 1-Р (А1)

50

Найти Р (А1)

_ 12

Р (А1) = 1- 41 = 9

50 50

_ 12__

Р (А1) = Ö9

50

_ 12__

Р (А1) = 1-Р (А1) = 1 - Ö9» 0,133

50 ___________________________________________

4. Имеются 28 билетов, на каждом из которых написано условие нескольких

задач. В 13 билетах задачи по статистике, а в остальных 15 – задачи по теории

вероятности. 3 студента выбирают на удачу по одному билету. Найти вероятность

того, что хотя бы одному из студентов не достанется задача по теории вероятности.

Аi –студенту достанется задача по теории вероятности

А – всем достанется задача по теор. вероят.

А = А1 А2 А3

А – хотя бы одному не достанется задача по теор.вероят.

_

Р (А) = 1 – Р(А) = 1- Р (А1 А2 А3) = 1 – Р *(А3) * Р (А1 А2) = 1-Р *(А3) * Р *

А1А2А1А2 А1

*(А2)*Р (А1)= 1 – 15 * 14 * 13 = 0,265

28 27 26

5. В ящике содержится 6 деталей, изготовленных на 1-м заводе, 2 детали на 2-м заводе

и 4 детали на 3-м заводе. Вероятность брака на заводах равна 19 , 19 и 59

20 50 100

Найти вероятность того, что наудачу извлеченная деталь будет качественная.

Н1 – деталь с 1-го завода

Н2 - деталь со 2-го завода

Н3 - деталь с 3-го завода.

Р(Н1) = 6 = 1; Р(Н2) = 2 = 1; Р(Н3) = 4 = 1

12 2 12 6 12 3

А - извлеченная деталь качественная

_ _ _ _

Р (А) = Р *(А) * Р (Н1) + Р *(А) * Р (Н2) + Р *(А)*Р (Н3) =19 * 1 + 19 * 1 + 59 *1=147=>

Н1 _ Н2Н3 20 2 50 6 100 3 200

Р (А) = 1 – Р (А) = 53/200

__________________________________________________________________________________________

6. Независимые вероятные величины Х,У представляют только целые значения

Х: от 1 до 16 с вер-ю 1

16

У: от 1 до 23 с вер-ю 1

23

Р ( Х+У = 32)

Х У Р (Х=9; Х =23) = P (Х=9) * Р (У = 23) = 1 * 1

9 23 16 23

10 22

P ( X+y=32 )=P ( X=8, y=23 ) + P ( X=10; y=12 )+…+P ( y=16,X=16 )=

16 16 = 8* 1 * 1 = 1

16 23 46

_________________________________________________________________________________________

7. Независимые случайные величины Х , У принимает только целые значения.

Х: от 1 до 14 с вероятностью 1

14

У: от1 до 7 с вероятностью 1

7

Найти вероятность того, что Р (Х £ У)

Если У = 7, то 1 £ Х £ 6 1 * 6

7 14

Если У = 6 то 1£ Х £ 5 1 * 5

7 14

Если У = 5 то 1£ Х £ 4 1 * 4

7 14

Если У = 4 то 1£ Х £ 3 1 * 3

7 14

Если У = 3 то 1£ Х £ 2 1 * 2

7 14

Если У = 2 то 1 = Х 1 * 1

7 14

Р (Х<У) = 1 * 6 + 1 * 5 + 1 * 1 = 1+2+3+4+5+6 = 21 = 3

7 14 7 14 7 4 7 * 14 714 14

_________________________________________________________________________________________

8. Независимые величины Х1……Х7 принимают только целые значения от

0 до 10 с вероятностью 1

11

Найти вероятность того , что Р(Х1…….Х7) = 0

Р (Х1……Х7 =0) = 1-Р (Х1….Х7¹ 0) = 1- Р( Х1¹0….Х7¹ )=1-Р( Х1¹0 )*Р (Х2¹0)

7

*….* Р(Х7¹0) = 1 – 10 * 10 = 1 - 10

11……. 11 11

7 раз

9. Независимые случайные величины Х, У, Z принимают целые значения

Х: от 1 до 13 с вероятн-ю 1

13

У: от 1 до 12 _____/_____ 1

12

Z от 1 до 9 _____/_____ 1

9

Вероятность того, что Х;У;Z. примут разные значения?

Пусть “Z” приняло какое-то значение “а”. Р (У¹а) = 11

12

Пусть при этом У= в

Р (Z ¹ a; Z ¹в) = 11 ; Р = 11 * 11

13 12 13.

_______________________________________________________________________________________

10.

Х147
Р0,10,40,5

м = М (Х) - ? М (Х) = 0,1+1,6+3,5 = 5,2

Р ( Х < м) - ? Р ( Х < 5,2) = Р(Х=1) + Р(Х=4) = 0,5

___________________________________________________________________________________________

11.

Х235
Р0,20,30,5

2

Х

4

9

25

Р0,20,30,5

Д (Х) - ?

М(Х) = 0,4+0,9+2,5=3,8

2

М (Х ) = 0,8+2,7+12,5 = 16

2 2 2

Д (Х) = М (Х ) – М (Х) = 16 - 3,8 = 1,56

______________________________________________________________________________________________________________

12. Независимые величины Х1,…….,Х9 принимают целое значение – 8, - 7,…..,5,6

с вероятностью 1

159

Найти М (Х1,Х2,…..,Х9) * М (Х2,….,Х9) = М (Х1) * М(Х2)*….* М(Х9) =М (Х9)

М (Х1) = -8 * 1 – 7 * 1 * 6 * 1 - … + 5 * 1 + 6 * 1 = 1(-8-7-5….+5+6) = -1

15 15 15 15 15 15

9 9

= М (Х1) = ( -1) = -1

13.

Х810121416
Р0,250,20,20,20,25

м= М (Х)-? М (Х) = 2 + 2 + 1,2 + 2,8 + 4 = 12

д(Х) -? 2 2

Р ( (Х-м) <d) Д (Х) = М (Х – М (Х) ) = М (Х-12)


Х-12-4-2024
Р0,250,20,10,20,25

2

(Х-12)

1

4

0

Р0,50,40,1

2

М (Х-Р) = 8+1,6

_____

d (Х) = Öd (Х) » 3,1

Р ( Х –12 < 3,1 ) = Р (-3,1<Х –12 < 3,1) = Р (8,9<Х<15,1) =

= Р (Х=10) + Р (Х=12) + Р (Х=14) = 0,5

___________________________________________________________________________________________________________

14. Х, У – неизвестные случайные величины

М (Х) = 3 8 2 2 2 2 2

М (У) =2 ½ Д(ХУ) = М( ХУ ) – М (ХУ) = М (Х ) * М (У ) – [ М (Х)*М (Х)]=

Д(Х) = 4 ½2 2 2 2

Д(У) = 8 ½ Д (Х)=М(Х ) – М (Х) = М (Х ) = Д (Х) + М (Х) = 4 + 9 = 13

Д (Х У) 2 2

М (У ) = Д (Х) + М (У) = 8 + 4 = 12

2

= 12*13 – (2 * 3) = 156 – 36 = 120

__________________________________________________________________________

15. Х, У – независимые неизвестные величины. Принимают значение 0 и 1.

Р (Х=0) = 0,3 ½2 2 2 2 2

Р (У=0) = 0,6 ½ М(Х+У) + М (Х + 2ху +у ) = М (Х ) +2М (Х) * М (У) + М (У ) =

2

М (Х+У)

2

Х , Х

0

1

Р 0,3 0,7

2

Х , Х

0

1

Р 0,6 0,4

2

М (Х) = 0,7 = М (Х )

2

М (У) = 0,4 = М ( У )

= 0,7 + 2 * 0,7 * 0,4 + 0,4 = 1,66

16. Х, У независимые неизвестные величины Принимают значение 0 и 1.

(задание как в 15).

Х

0

1

Р 0,3 0,7

У

0

1

Р 0,5 0,5

х - у

М (3 ) - ?

х-у х -у х -у

М (3 ) = М (3 * 3 ) =М (3 ) * М (3 ) = 2,4 * 2 = 1,6

3

х

3

1

3

Р 0,3 0,7

3

1

1

3

Р 0,5 0,5

Х -у

М (3 ) = 0,3 + 2,1 = 2,4 М (3 ) = 0,5 + 0,5 = 4 * 0,5 = 1

3 3 3

_____________________________________________________________________________________________________________

17. Производится 10240 независимых испытаний, состоящих в том, что

подбрасываются 9 монет

Х – число испытаний, в которых выпало 3 герба

М (Х) -?

1-испт. - 9 монет

9 испытаний Р = 1

2

3 3 6 3 9

Р(Г = 3) = С9 * (1 ) * (1 ) = С9 * (1 )= 84 * 1 - 21 = …

2 2 2 512 128

n = 10240 испытаний

Р = 21 ; М (Х) = np = 21 * 10240 = 1680

128 128

18. В серии независимых испытаний (одно испытание за ед.времени)

вероятность наступления А равна 1

8.

Пусть Т-время ожидания наступления события А 14 раз. Найти М (Т)1 Д (Т).

Х1 – время ожидания до первого наступления А

Х2 – время ожидания от первого наступления А до 2-го

Т = Х1 + Х2 +Х3 + …..Х14

Хi Р = 1

8 7/8

М (Хi) = 1 = 8 ; d = 7 Д (Хi) = d = = 56

8 822

p 1/8

М (Т) = 14М * (Х1) 14 * 8 = 112

Д (Т) = Д(X1 ) = 14 * 56 = 784

19. Величины Х1 …..Х320 распределены по Биноминальному закону с параметрами

п =4, р = 3 Найти М (Х1 +Х2 + …+ Х320)=?

8

2 2 2

М (Х1 + …..+Х 320) = 320М (Х1 ) = Х1 – биноминальное

2 2 М (Х1) = пр = 3

= М(Х1 ) = Д(Х1) + М (Х1) = 2

2 Д (Х1 ) = nрq = 3 * 5 = 5

= 15 + 3= 15 + 9 = 51 2 8 16

16 2 16 4 16

= 320 * 51 = 1020

16

_____________________________________________________________________________________________________________________

20. Величины Х1 …..Х18 распределены по закону Пуассона с одинаковым

мат. ожиданиям равным 8.

2 2

Найти М (Х1 +…+ Х18 ) - ?

M (Х) = Д (Х) = l= 8

2 2 2 2

М (Х1 +…+ Х18 ) = 18 М (Х1 ) = 18 (Д (Х1) + М (Хi ) )=18(8 + 64)=18 * 72=1296

_________________________________________________________________________________________________________

21. Х – равномерно распределён на отр. [ - 8,2 ]

Р ( 1 )>5 = Р (0< Х <1 ) = > (0< Х <0,5) =

Х 5

1 – 5 >0 ; 1 – 5Х> 0; Х –1/5< 0 Û (0< Х <0,5)

Х Х Х

1 – 5Х> 0; Х – 1/5< 0

Х Х

[ х, в ]

0,Х>а 0; Х <а

f (Х)= 1 ; а < Х< в F (Х) = х – а ; а £ Х £ аÛ0< Х 1/5

в –о в –а

0,Х > в 1, Х >B

F (Х) = Х + 8= F (1/5) - F ( 0 ) =1/5 + 8 - 8 = 1

5 10 10 50

_______________________________________________________________________________________________________________________

22. Х – равномерно распределена наотр. [ -17; 10 ]

2 2

Р ( Х > 64) = 1- Р ( Х < 64) = 1 – 16

27

2

Р (Х < 64 ) = Р (-8 < Х <8) =

0; Х < -17

F(Х) =Х + 17 , -17 £ Х £ 10

27

1, Х > 10

= F (8) – F (-8) = 8 + 17 - -8 + 17 = 16

27 27 27

______________________________________________________________________________________________________________

23. Х – равномерно распределена наотр. [ -1; 1 ]

8/9 X [a,b] ; f (x)

М ( Х ) a 0; x <-1

M(x)= ∫ x f(x) dx f (x)= -1<x<1

b 0; x>1

a

M(y(x))=∫ y (x) f (x) dx

b

8/918/9 17/9 1

M(X ) = ∫ ½* X DX = ½ * X = 9/17

-1 17/9 -1

24. Х – равномерно распределена наотр. [ 0.1 ]

9/10 9/10

Д ( 19Х ) = 361 (Х )

9/10 9/10 2 2 9/10 9/4 2 9/10 9/10 * 2

Д (Х ) = М ((Х ) ) - М(Х ) = М (Х ) - М (Х ) Х

__________________________________________________________________________________________________________

25. Х – равномерно распределена наотр. [ 5; 8 ] * Д (24x+ 36) - ?

Д (24Х + 36) = Д (24Х) = 576 * Д (Х) = 576 * 3 = 432

2 4

Д (Х) = ( в – а )

12

2

Д (Х) = 8 – 5 = 9 = 3

12 12 4

_______________________________________________________________________________________________________________

26. Х1,……Х2 – Независимые и распределенные по показательному закону.

2

Найти М [ (Х1 + Х2 + …..+ Х10) ], если М (Хi ) = 4.

М (Х) = 1

l

Д (Х) = 1

2

l

M (Хi ) = > Д (Хi) = 16

2 2 2

М [ (Х1 +….+ Х10) ]=Д(Х1 +…+ Х10) + М (Х1 +….+ Х10) =10Д (Х1)+[ 10М (Х1) ]=

2

= 160 + ( 10 * 4) = 1760

_________________________________________________________________________________________________________________

2

М(Х) =1/l; Д(Х) = 1/l

27. Х –распределен по показательному признаку

2

Найти М [ (Х + 8) ] , если Д (Х) = 36М (Х)=6

2 2 2 2

М (Х + 8) = M(Х + 16х + 64) = М (Х ) + 16М (Х) + М (64) = Д (Х) + М (Х) +

+ 16 М(Х) + 64 =36 + 36 + 96 + 64 =232

____________________________________________________________________________________________________________

28. Х –показательное распределение; Х – показательный закон


0, Х < 0

F (Х) = -2х

1 – е , Х >0, Найти Ln (1 – Р ( Х < 6) ) = Ln (1 – F (6) ) =

-6/7 -6/7 -6/7

= F (6) = 1 – е = Ln ( 1 – (1 – е ) ) = Ln е = - 6/7

29. (Х) - случайная величина


0, Х < 10

ƒ (Х) = С ; Х ≥ 10

5

Х

С - ? ; М (Х) - ?

¥¥ опр. B ¥ -5

∫ ƒ (Х)dх = 1 =>∫ с dх = lim ∫ = cdx = C lim ∫ X dx =

10 10 5 b->¥ 10 5 b->¥ 10

Х X

b

-4 -4 4 4 4

= C * lim X = C lim - b + 10 = C * 10 = > 1 = C 10 = >

b->¥-4 b->¥4 4 4 4

10

4

=>C = 4 * 10


0; Х < 10

ƒ (Х) = 4

4 * 10 , Х ³ 10

5

Х

¥¥ 4

М (Х) = ∫ Х ƒ (Х) dx = ∫ 4 * 10 dx

10 10 4

Х

_________________________________________________________________________________

30. Х – нормальная случайная величина

М (Х) = 16

Д (Х) = 25

? – Р (Х>10,5)


= 1 - f 10,5 – 16 = 0,5 + f (1,1) = 0,5 + 0,364 = 0,864

2 5

________________________________________________________________________________________


1. Р (d £ X £ b ) = fb – m - fd - m

dd


2. P ( X < b ) = 1 + fb – m

2 d


3. P ( X > b ) = 1 - fb – m

2 d


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 395 оценок star star star star star
среднее 4.9 из 5
ЮУрГУ
Анна очень добросовестный исполнитель, я буду обращаться к ней еще. Задание выполнено намн...
star star star star star
ОГИС
Работа выполнена быстро и качественно! По написанию-доступна к восприятию! Легко читается!...
star star star star star
ИРНИТУ
Работа выполнена досрочно, исполнитель всегда на связи, можно обсудить интересующие вопрос...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

построить логическую схему F(a, b) под цифрой...

Решение задач, Информатика

Срок сдачи к 15 янв.

2 минуты назад
4 минуты назад

Проектирование различных форм взаимодействия органов местного самоуправления со СМИ

Магистерская диссертация, Государственное и муниципальное управление

Срок сдачи к 31 мар.

11 минут назад

Сделать презентацию + доклад

Презентация, основы теории английского языка

Срок сдачи к 15 янв.

11 минут назад

Оценка эффективности использования оборотного капитала предприятия

Курсовая, Анализ финансово-хозяйственной деятельности (афхд)

Срок сдачи к 29 янв.

11 минут назад

Контрольная работа

Решение задач, БЖД

Срок сдачи к 18 янв.

11 минут назад

Курсовая по предмету «Экономика»

Курсовая, Экономика

Срок сдачи к 27 янв.

11 минут назад

Выпускная квалификационная работа

Диплом, Машиностроение

Срок сдачи к 31 янв.

11 минут назад

выделить цифры на картинках ярким цветом

Другое, Медицина

Срок сдачи к 15 янв.

11 минут назад

Сделать курсовую работу и 3 лабораторных работы

Курсовая, Математические основы управления и методы инженерных задач

Срок сдачи к 18 янв.

11 минут назад

Размер пенсии по старости, 30-40стр

Курсовая, Право социального обеспечения

Срок сдачи к 13 февр.

11 минут назад

Решить несложное задание

Решение задач, основы технологии машиностроения

Срок сдачи к 15 янв.

11 минут назад

Практическая работа 4, вариант 24. Задание расписано в прикрепленных...

Лабораторная, Теоретические основы электротехники

Срок сдачи к 15 янв.

11 минут назад

построить логическую схему функции F(a, b)

Онлайн-помощь, Информатика

Срок сдачи к 15 янв.

11 минут назад

Решить примеры (9 шт) в Multisim

Лабораторная, Электротехника и электроника

Срок сдачи к 21 янв.

11 минут назад

2 контрольные

Контрольная, Планирование и прогнозирование

Срок сдачи к 16 янв.

11 минут назад

Решить задачи

Решение задач, Начертательная геометрия

Срок сдачи к 15 янв.

11 минут назад

Экономика труда курсовая работа № варианта 4

Курсовая, Экономика предприятия

Срок сдачи к 18 янв.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно