Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков

Тип Реферат
Предмет Математика
Просмотров
1484
Размер файла
176 б
Поделиться

Ознакомительный фрагмент работы:

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

«Гомельский государственный университет

имени Франциска Скорины»

Математический факультет

Кафедра дифференциальных уравнений

Допущена к защите

Зав. кафедрой____________Мироненко В. И.

«____»_________________ 2003 г.

КАЧЕСТВЕННОЕ ИССЛЕДОВАНИЕ В ЦЕЛОМ ДВУМЕРНОЙ КВАДРАТИЧНОЙ СТАЦИОНАРНОЙ СИСТЕМЫ С ДВУМЯ ЧАСТНЫМИ ИНТЕГРАЛАМИ В ВИДЕ КРИВЫХ ТРЕТЬЕГО И ПЕРВОГО ПОРЯДКОВ

Дипломная работа

Исполнитель: студентка группы М-51

_____________________ ПЛИКУС Т.Е.

Научный руководитель: доцент, к.ф-м.н.

_____________________ ФИЛИПЦОВ В.Ф.

Рецензент:доцент, к.ф-м.н.

_____________________ РУЖИЦКАЯ Е.А.

Гомель 2003

Реферат

Дипломная работа состоит из 25 страниц, 11 источников.

Ключевые слова и словосочетания: квадратичная двумерная стационарная система, частный интеграл, кривые третьего и первого порядков, точка, характеристическое уравнение, характеристическое число, узел, седло.

Объект исследования: квадратичная двумерная стационарная система с заданными интегральными кривыми третьего и первого порядков.

Предмет исследования: построение квадратичной двумерной стационарной системы с частными интегралами в виде кривых третьего и первого порядков, нахождение и исследование состояний равновесия, исследование бесконечно-удаленной части плоскости.

Цель дипломной работы: качественное исследование в целом двумерной квадратичной стационарной системы.

Основным инструментом исследований является понятие частного интеграла.

Содержание

Введение

1 Построение квадратичных двумерных стационарных систем

1.1 Построение квадратичной двумерной стационарной системы с частным интегралом в виде кривой третьего порядка

1.2 Построение квадратичной двумерной стационарной системы с частным интегралом в виде кривой первого порядка

1.3 Необходимые и достаточные условия существования у системы (1.1) двух частных интегралов (1.4), (1.18)

2 Исследование поведения траекторий системы на плоскости

2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.35) в конечной плоскости

2.2 Исследование бесконечно-удаленной части плоскости

2.3 Построение качественной картины поведения траектории в круге Пуанкаре

Заключение

Список использованных источников

Приложение. Поведение траекторий системы (2.1)

Введение

Известно, что аналитический вид решения очень хорош в случае линейных систем. В случае же нелинейных систем даже тогда, когда решение может быть выражено через элементарные функции, эти выражения могут быть столь сложными, что непосредственный их анализ практически невозможен. В связи с этим появилась необходимость в создании такой теории, с помощью которой можно было бы изучать свойства решений дифференциальных уравнений по виду самих уравнений. Такой теорией, наряду с аналитической, и является качественная теория дифференциальных уравнений.

Впервые задача качественного исследования для простейшего случая системы двух дифференциальных уравнений

(0.1)

с полной отчетливостью была поставлена А. Пуанкаре [7] в конце прошлого столетия. Позднее исследования А. Пуанкаре были дополнены И. Бендиксоном [3,с.191-211] и уточнены Дж. Д. Биркгофом [4,с. 175-179].

Одной из задач качественной теории дифференциальных уравнений является изучение поведения траекторий динамической системы (0.1) на фазовой плоскости в целом в случае, когда P(x,y) и Q(x,y) – аналитические функции. Интерес к изучению этой системы или соответствующего ей уравнения объясняется их непосредственным практическим применением в различных областях физики и техники.

(0.2)


Н.Н. Баутиным [1, с. 181- 196] и Н. Н. Серебряковой [8, с. 160- 166] полностью исследован характер поведения траекторий системы (0.1), имеющей два алгебраических интеграла в виде прямых. В [10, с. 732- 735] Л. А. Черкасом такое исследование проведено для уравнения (0.2) при наличии частного интеграла в виде кривой третьего порядка. Яблонский А. И. [11, с. 1752- 1760] и Филипцов В. Ф. [9, с. 469-476] изучали квадратичные системы с предположением, что частным интегралом являлись алгебраические кривые четвертого порядка.

Рассмотрим систему дифференциальных уравнений

(0.3)

В настоящей работе проводится качественное исследование в целом системы (0.3) при условии, что она имеет два частных интеграла вида:

x3+a1x2y+b1xy2+g1y3+a2x2+b2xy+g2y2+b3x+g3y+d=0, (0.4)

mx+ny+p=0 (0.5)

в предположении, что коэффициенты кривых (0.4), (0.5) и системы (0.3) вещественные.

Работа состоит из двух глав.

В первой главе проводится построение квадратичной двумерной стационарной системы с частными интегралами в виде кривых третьего и первого порядков. При этом коэффициенты интегралов выражаются через коэффициенты системы, а коэффициенты системы связаны между собой тремя соотношениями.

Во второй главе проводится качественное исследование системы, включающее в себя нахождение и исследование состояний равновесия, исследование бесконечно-удаленной части плоскости при фиксированных значениях коэффициентов системы.


1 ПОСТРОЕНИЕ КВАДРАТИЧНЫХ ДВУМЕРНЫХ СТАЦИОНАРНЫХ СИСТЕМ

1.1 Построение квадратичной двумерной стационарной системы с частным интегралом в виде кривой третьего порядка

Рассмотрим систему дифференциальных уравнений

(1.1)

Согласно [10, с. 1752-1760], если система, правые части которой есть полиномы n-ой степени, имеет частный интеграл вида:

, (1.2)

где Fk(x,y) – однородные полиномы от x и y степени k, то выполняется равенство:

. (1.3)

Пусть частный интеграл (1.2) имеет вид:

F(x,y)ºx3+a1x2y+b1xy2+g1y3+a2x2+b2xy+g2y2+b3x+g3y+d=0 (1.4)

Для интеграла (1.4) системы (1.1) имеет место соотношение (1.3),где L(x,y) = fx+gy+k, f, g, k – постоянные:


(3x2+2a1xy+b1y2+2a2x+b2y+b3)(ax+by+a1x2+2b1xy+c1y2)+(a1x2+

2b1xy+3g1y2+b2x+2g2y+g3)(cx+dy+a2x2+2b2xy+c2y2)=(x3+a1x2y+b1xy2+ (1.5)

g1y3+a2x2+b2xy+g2y2+b3x+g3y+d)(fx+gy+k).

Приравнивая в (1.5) коэффициенты при одинаковых степенях выражений

xmynслева и справа, получим следующую связь между коэффициентами кривой (1.4) и системы (1.1):

3a1+a1a2-f=0, (1.61)

(2a1+2b2-f)a1+2a2b1-g+6b1=0, (1.62)

2a1c1+(2b1+2c2-g)b1+(6b2-f)g1=0, (1.63)

(4b1+c2-g)a1+(a1+4b2-f)b1+3a2g1+3c1=0, (1.64)

c1b1+(3c2-g)g1=0; (1.65)

ca1+(2a1-f)a2+a2b2-k+3a=0, (1.71)

(2a+d-k)a1+2cb1+(4b1-g)a2+(a1+2b2-f)b2+2a2g2+3b=0, (1.72)

2ba1+(a+2d-k)b1+3cg1+2c1a2+(2b1+c2-g)b2+(4b2-f)g2=0, (1.73)

bb1+(3d-k)g1+c1b2+(2c2-g)g2=0; (1.74)

(2a-k)a2+cb2+(a1-f)b3+a2g3=0, (1.81)

2ba2+(a+d-k)b2+2cg2+(2b1-g)b3+(2b2-f)g3=0, (1.82)

bb2+(2d-k)g2+c1b3+(c2-g)g3=0; (1.83)

(a-k)b3+cg3-df=0, (1.91)

bb3+(d-k)g3-dg=0, (1.92)

dk=0. (1.93)


Будем предполагать, что коэффициенты кривой (1.4) и системы (1.1) вещественные и кривая не проходит через начало координат, тогда d=0. Согласно (1.93) в этом случае k=0.

Будем рассматривать частный случай системы (1.1), т.е. будем предполагать, что a2=c1=0, а коэффициенты a1, b1, g1 интегральной кривой (1.4) обращаются в нуль.

Уравнения (1.61) – (1.93) при этих предположениях будут иметь вид:

3a1-f=0, (1.101)

g+6b1=0; (1.102)

(2a1-f)a2+3a=0, (1.111)

(4b1-g)a2+(a1+2b2-f)b2+3b=0, (1.112)

(2b1+c2-g)b2+(4b2-f)g2=0, (1.113)

(2c2-g)g2=0; (1.114)

2aa2+cb2+(a1-f)b3=0, (1.121)

2ba2+(a+d)b2+2cg2+(2b1-g)b3+(2b2-f)g3=0, (1.122)

bb2+2dg2+(c2-g)g3=0; (1.123)

ab3+cg3-df=0, (1.131)

bb3+dg3-dg=0. (1.132)

Из условий (1.101) и (1.102) получаем, что

f = 2a1, g = 6b1.

Из условия (1.114) имеем

(2c2-g)g2=0.

Пусть g2, тогда

2c2-g=0 и g=2c2,

с другой стороны g = 6b1, значит

c2=3b1.

Имея условия f = 2a1, g = 6b1, c2=3b1, из соотношений (1.111) – (1.113), (1.121), (1.123) и (1.131) найдем выражения коэффициентов кривой (1.4) через коэффициенты системы(1.1) в следующем виде:

a2 = , b2 = ,

g2 = , b3 = ,

g3 = ,(1.15)

d = .

Равенства (1.122) и (1.132) с учетом полученных выражений (1.15), дадут два условия, связывающие коэффициенты a, b, c, d, a1, b1, b2:

(2ab1-ba1)[3(32a1b1b2-15a12b1-16b1b22) a+(8a1b22-18a12b2+9a13) b+

24(a1b12-b12b2) c+(16a1b1b2-15a12b1) d]=0, (1.16)

(2ab1-ba1)[12(7a1b1b2-3a12b1-4b1b22) a2+6(3a1b12-4b12b2) ac+(3a12b1-

-4a1b1b2) bc+2(4a12b2-3a13)bd –8a1b12cd+4a12b1d2]=0. (1.17)

Итак, установлена следующая теорема:

Теорема 1.1Система (1.1) имеет частный интеграл вида (1.4), коэффициенты которого выражаются формулами (1.15), при условии, что коэффициенты системы связаны соотношениями (1.16), (1.17) и c1=a2= 0, c2= 3b1.

1.2 Построение квадратичной двумерной стационарной системы с частным интегралом в виде кривой первого порядка

Рассмотрим система (1.1), которая в качестве частного интеграла (1.2) имеет кривую первого порядка:

mx+ny+p=0. (1.18)

В системе (1.1), согласно предыдущего параграфа

a2=c1=0, c2=3b1. (1.19)

Для интеграла (1.18) системы (1.1), с учетом (1.19), имеет место соотношение (1.3), где L(x,y)= ax+by+g, a, b, g – постоянные:

m(ax+by+a1x2+2b1xy)+n(cx+dy+2b2xy+3b1y2)=

=(mx+ny+p)( ax+by+g). (1.20)

Приравнивая в (1.20) коэффициенты при одинаковых степенях xmyn, получим следующую связь между коэффициентами кривой (1.18) и системы (1.1):

(a1-a)m= 0, (1.211)

(2b1-b)m+(2b2-a)n=0, (1.212)

(3b1-b)n=0; (1.213)

(a-g)m+cn-pa=0, (1.221)

bm+(d-g)n-bp= 0, (1.222)

pg= 0. (1.223)


Предположим, что кривая не проходит через начало координат, то есть p¹0. Тогда из условия (1.223) получаем, что g=0.

Условия (1.221), (1.222) запишутся в виде:

am+cn-pa=0, (1.231)

bm+dn-bp= 0. (1.232)

Из условий (1.211) и (1.213) имеем:

(a1-a)m= 0,

(3b1-b)n=0.

Пусть m¹0, тогда a1-a=0 и

a=a1, (1.24)

а при n¹0, получаем, что 3b1-b=0 и

b=3b1. (1.25)

Учитывая (1.24) и (1.25) из условия (1.212) находим выражение коэффициента m:

m=, (1.26)

а соотношение (1.231) даст значение коэффициента p:

p=. (1.27)


Из равенства (1.232), с учетом полученных выражений (1.26) и (1.27), находим условие на коэффициенты системы (1.1):

[3(a1b1-2b1b2) a+(2a1b2-a12) b-3b12c+a1b1d] n=0. (1.28)

Итак, установлена следующая теорема:

Теорема 1.2Система (1.1) имеет частный интеграл (1.18), коэффициенты которого выражаются формулами (1.26),(1.27), при условии, что коэффициенты системы связаны соотношением (1.28) и c1=a2= 0, c2= 3b1.

1.3 Необходимые и достаточные условия существования у системы (1.1) двух частных интегралов (1.4), (1.18)

В разделах 1, 2 мы получили, что система (1.1) будет иметь два частных интеграла в виде кривых третьего и первого порядков при условии, что коэффициенты системы связаны соотношениями:

(2ab1-ba1)[3(32a1b1b2-15a12b1-16b1b22) a+(8a1b22-18a12b2+9a13) b+

24(a1b12-b12b2) c+(16a1b1b2-15a12b1) d]=0,

(2ab1-ba1)[12(7a1b1b2-3a12b1-4b1b22) a2+6(3a1b12-4b12b2) ac+(3a12b1-

-4a1b1b2) bc+2(4a12b2-3a13)bd –8a1b12cd+4a12b1d2]=0,

[3(a1b1-2b1b2) a+(2a1b2-a12) b-3b12c+a1b1d] n=0.

Причем b1¹0, a1¹0, 2b1a-ba1¹0.

Рассмотрим частный случай, т.е. будем предполагать, что коэффициенты

a1=, b1=1, b2=0.


Следовательно, наши соотношения запишутся в виде:

a-b-3c+d=0, (1.30)

-a+b+6c-d=0, (1.31)

-a2+d2+ac+bc-bd-2cd=0. (1.32)

Выразим из условия (1.30) коэффициент c

c=a-b+d, (1.33)

подставим (1.33) в равенство (1.31), найдем коэффициент d

d=(-21a+b). (1.34)

Из условия (1.32), учитывая (1.33) и (1.34) находим

b=a.

Получаем, что коэффициенты системы (1.1) определяются по следующим формулам:

b=a,

c=-a, (1.35)

d=- a,

a1=, b1=1, a2=0, c1=0, b2=0, c2=3b1=3.

Равенства (1.15), (1.26) и (1.27), при условии, что имеют место формулы (1.35), дадут следующие выражения для коэффициентов интегралов (1.4) и (1.18):

a2=12a, b2= -a,

g2=a, b3=a2,

g3= -a2,d=a3, (1.36)

m= -n, p= -an.

Теорема 1.3Система (1.1) имеет два частных интеграла вида (1.4) и (1.18) с коэффициентами, определенными формулами (1.36), при условии, что коэффициенты системы (1.1) выражаются через параметры по формулам (1.35).

2 ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ТРАЕКТОРИЙ СИСТЕМЫ НА ПЛОСКОСТИ

2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.35) в конечной плоскости

Пусть мы имеем систему (1.1), коэффициенты которой определяются согласно формулам (1.35),т.е. систему:

(2.1)

Интегральные кривые (1.4),(1.18), согласно формулам (1.36), имеют вид:

x3+12ax2-axy+ay2+a2x-a2y+a3=0, (2.2)

-nx+ny-an=0. (2.3)

Найдем состояния равновесия системы (2.1). Приравняв правые части системы к нулю и исключив переменную x, получим следующее уравнение для определения ординат состояний равновесия:

8192y4-11776ay3+5480a2y2-825a3y=0. (2.4)

Из (2.4) получаем, что

y0=0, y1=a, y2=a, y3=a. (2.5)


Абсциссы точек покоя имеют вид:

x0=0, x1= -a, x2= -a, x3= -a. (2.6)

Согласно (2.5) и (2.6) заключаем, что система (2.1) имеет четыре состояния равновесия - , , , .

Исследуем поведение траекторий в окрестностях состояний равновесия , , , .

1. Исследуем точку .

Составим характеристическое уравнение в точке [10, с. 1760-1765]

Отсюда

(2.7)

Следовательно, характеристическое уравнение примет вид:


==0.

,

Характеристическими числами для точки системы (2.1) будут

.

Корни - действительные, различных знаков не зависимо от параметра a. Следовательно, точка - седло.

2. Исследуем точку .

Составим характеристическое уравнение в точке A. Согласно

равенствам (2.7) характеристическое уравнение примет вид:

,

,

то есть

, .


Корни - действительные и одного знака, зависящие от параметра a. Если a<0, то точка - устойчивый узел, если a>0, то точка -неустойчивый узел.

3. Исследуем точку .

Применяя равенства (2.7), составим характеристическое уравнение в точке B:

, .

Корни - действительные и одного знака. Следовательно, точка - седло при любом параметре a .

4. Исследуем точку .

Учитывая выражения (2.7), составим характеристическое уравнение в точке:

,

Характеристическими числами для точки системы (2.1) будут

,

Корни - действительные и одного знака.Следовательно точка - устойчивый узел, если a>0 и неустойчивый узел, если a<0 .

2.2 Исследование бесконечно-удаленной части плоскости

Очень важным для исследования вопроса о наличии замкнутых траекторий являются сведения о поведении траекторий при удалении в бесконечность, то есть исследование бесконечно-удаленных частей плоскости.

Для этого воспользуемся преобразованием Пуанкаре [7]:

, (2.8)

которое позволяет изучить особые точки лежащие на экваторе сферы Пуанкаре вне концов оси OY.

Имеем

Значит преобразование (2.8) переводит систему (1.1) в систему:

(2.9)

Введем новое время . Система (2.9) примет вид:

(2.10)

Изучим бесконечно-удаленные точки на оси u, т.е. при z=0.

Получаем

(2.11)

Приравнивая второе уравнение системы (2.11) к нулю, получаем

Таким образом, состоянием равновесия являются две точки N1(0,0) N2(0,).

Исследуем характер точек N1, N2.

1. Исследуем точку N1(0,0).

Составим характеристическое уравнение системы (2.10) в точке N1:

(2.12)

Согласно выражениям (2.12), получаем характеристическое уравнение:

Получим, что

Корни - действительные и одного знака. Следовательно, точка N1(0,0) - устойчивый узел.

2. Исследуем точку N2(0,).

Учитывая выражение (2.12), составим характеристическое уравнение в точке N2:

соответственно характеристическими числами будут являться

Корни - действительные и различных знаков. Следовательно, точка N2(0,)-седло.

Исследуем бесконечно-удаленную часть плоскости в конце оси OY с помощью преобразования [7]

Это преобразование систему (2.1) переводит в систему:

(2.14)

Введем новое время , тогда система (2.14) примет следующий вид:

(2.15)

При z=0, получаем:

(2.16)

Приравнивая второе уравнение системы (2.16) к нулю, получаем

Для исследования состояний равновесий на концах оси OY, необходимо исследовать только точку N3(0,0).

Составим характеристическое уравнение системы (2.16) в точке N3:

соответственно характеристическими числами будут являться

Корни - действительные и одного знака. Следовательно, точка N3(0,0) – устойчивый узел.

Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 1.

Таблица 1.

aОАВС
N1N2N3
(-∞;0)сУ+сУ-У+сУ+
(0;+∞)сУ-сУ+У+сУ+

Примечание: через с, у+, у- обозначены соответственно седло, устойчивый узел, неустойчивый узел.

Положение кривых (1.4), (1.18) и расположение относительно их состояний равновесия при a>0 и a<0 дается соответственно рис. 1(а,б).

а) (a>0)

б) (a<0)

Рис.1

2.3 Построение качественной картины поведения траектории в круге Пуанкаре

Поскольку три состояния равновесия A, B, C расположены на интегральных кривых, то вопроса существования предельных циклов вокруг этих точек не возникает.

Начало координат расположено вне интегральных кривых и является седлом с индексом (-1). Предельные циклы могут окружать состояния равновесия с индексом (+1). Отсюда заключаем, что изучаемая система предельных циклов не имеет.

Поведение сепаратрис седла O, B легко выяснить.

Сепаратрисы седла В полностью определяются интегральными кривыми. Сепаратрисы седла О(0,0) однозначно выясняются с помощью изучения поля направления системы на осях координат. Так для а>0 α – сепаратрисы седла О примыкают к точке С и N3, а ω – сепаратрисы примыкают к точке А и N1, а при а<0 a-сепаратрисы примыкают к точке А и N1, w - сепаратрисы – к точке С и N3.

В результате получаем, что качественная картина исследования траекторий в целом при а>0 определяется рисунком 2а приложения, а при а<0 – рисунком 2б приложения.


ЗАКЛЮЧЕНИЕ

В данной дипломной работе построена квадратичная двумерная стационарная система, имеющая два частных интеграла в виде кривых третьего и первого порядков. При этом коэффициенты кривых выражаются через произвольный параметр системы.

Проведено качественное исследование полученной системы, найдены четыре состояния равновесия, три из которых А, В, С принадлежат интегральным кривым. Исследована бесконечно-удаленная часть плоскости, доказано отсутствия предельных циклов, выяснено поведение сепаратрис седел и построена качественная картина поведения траекторий системы в целом.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Баутин Н.Н. О числе предельных циклов, появляющихся при изменении коэффициентов из состояния равновесия типа фокуса или центра // Матем. сб.- 1952.- Т.30,№1.- 458 с.

2 Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости.-М.: Наука, 1976.- 274 с.

3 Бендиксон И. О кривых, определяемых дифференциальными уравнениями.- УМН, 1941.- Вып. 9.- 643 с.

4 Биркгоф Дж.Д. Динамические системы. М.-Л.: Гостехиздат, 1941.- 340 с.

5 Воробьев А.П. К вопросу о циклах вокруг особой точки типа “узел” // ДАН БССР.- 1960.- Т.4,№9.- 720 с.

6 Еругин Н.П. Построение всего множества систем дифференциальных уравнений, имеющих заданную интегральную кривую.- ПММ.- 1952.- Т.16, Вып. 6.- с.659-670.

7 Пуанкаре А. О кривых, определяемых дифференциальными уравнениями.- М.-Л.: ГИТТЛ, 1947.- 839 с.

8 Серебрякова Н.Н. Качественное исследование одной системы дифференциальных уравнений теории колебаний.- ПММ.- 1963 Т.27, Вып.1.- 230 с.

9 Филипцов В.Ф. К вопросу алгебраических интегралов одной системы дифференциальных уравнений // Дифференц. уравнения.- 1973.- Т.9,№3.- 256

10 Черкас Л.А. Об алгебраических решениях уравнения , где P и Q – многочлены второй степени // ДАН БССР.- 1963.- Т.7,№11.- 950 с.

11 Яблонский А.И. Алгебраические интегралы одной системы дифференциальных уравнений // Дифференц. уравнения.- 1970.- Т.6,№10.- с. 1752-1760.


ПРИЛОЖЕНИЕ

Поведение траекторий системы (2.1)



а) (а>0)



б) (а<0)

Рис. 2


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно