Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


К решению теоремы Ферма

Тип Реферат
Предмет Математика
Просмотров
809
Размер файла
32 б
Поделиться

Ознакомительный фрагмент работы:

К решению теоремы Ферма

Статья посвящена исследованию доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y. Проблему доказательства теоремы Ферма следует считать закрытой.

Более 350 лет профессиональные математики и любители пытаются доказать теорему Ферма. Однако до настоящнго времени нет общепризнанного доказательства. Тем не менее, интерес к загадочной теореме не угасает и до настоящего времени остается высоким.

В настоящей статье предлагается к рассмотрению простой метод доказательства, основанный на разделении числового множества yn+ xn=zn(1)

на два подмножества, из которых первое содержит только те x и yдля всех показателей степени n, которые могут содержатьрешения уравнения (1) в целых числах x,y,z, а второе подмножество содержит только нецелые решения.

Отделить друг от друга упомянутые подмножества представляется возможным путем разложения уравнения (1) на составные части по биному Ньютона и составления на их основе уравнения с учетом принятых ограничений для поиска целых решений. Для этого представим уравнение (1) в виде, удобном для разложения :

(x - a)n + xn –(x+b)n = 0 (2)

Здесь: x – переменное число, а < xцелое число; nцелое число, показатель степени; bцелое или нецелое число, в зависимости от соотношения x,a, и n.

Сущность доказательства заключается в определении подходящих значений x,y,zдля удовлетворения уравнений ( 1 ) и ( 2 ) методом последовательных приближений. Задача решается применительно к 450 сектору I квадранта в плоскостных координатах (x,y), т.к. из-за недостатка информации координата z равна 0. Полученные результаты могут быть распространены на остальные 7 секторов плоскости(x,y), определяя тем самым область распространения условий теоремы Ферма.

Итак, применяя формулу бинома Ньютона к выражению (2), получим:

(x–a)n + xn = 2xn - nxn-1 a + cn2 xn-2 a2 - cn3 xn-3 a3...... +an

(x+b)n = xn +nxn-1 b + cn2 xn-2 b2 + cn3 xn-3 b3 .......+bn

D = xn - nxn-1 (a+b) + cn2 xn-2 (a2-b2) - cn3 xn-3 (a3+b3)..+(an+bn) =0

(3)

Назовем выражение (3) основным уравнением в поисках целых решений уравнения (2). Подходящие значения x, y=(xa), z=(x+b), удовлетворяющие уравнениям (1) и (2), будем искать при условии a=b=1. Обоснование принятых допущений (ограничений) изложено ниже. Полагая a = b , уравнение (3) преобразуем к виду:

xn - 2nxn-1 a - 2cn3 xn-3 a3 - 2cn5 xn-5 a5 - ... (an + an )=0(4)

ОбозначимчерезP(a,n) = 2cn3 xn-3 a3 + 2cn5 xn-5 a5 +... ( an+an) - добавку после первых двух членов уравнения (4). Тогда уравнение (4) примет вид:

xn - 2nxn-1 a - P(a,n) = 0

Разделив все члены уравнения на xn-1, получим выражение для искомого x

x=2na+P(a,n)/xn-1 ,гдеP(a,n)/xn-1 ³0 (5)

При a = b = 1 выражение (5) примет вид:

x=2n+P(1,n)/xn-1 (6)

Подходящие значения y=x-1 и z=x+1 определяются через известный х. Из формул (5) и (6) становится ясным, что при n>2 согласование левых и правых частей уравнений (1) и (2) возможно только при учете добавки P(1,n)/xn-1 .

Исходя из изложенного, целые числа х и у из теоремы Ферма следует однозначно отнести ко второму подмножествуyn+ xn=zn

Ниже, в таблице приведены результаты расчетов согласования для n=2,3,4 и 5.

n xy=x-1z=x+1xnynxn+ ynznD%
24351692525-
36,0555,0557,055221129350350-
48,1257,1259,1254350254068906890-
510,2009,20011,200107000660001730001750001,25

На основании изложенного можно сделать следующие предварительные выводы:

1. Согласование левых и правых частей уравнений (1) и (2) невозможно без учета добавки P(a,n)/xn-1.

2. Если уравнение yn+ xn=znс учетом добавки P(a,n) выразить в числовых отрезках и спроектировать на плоскость (х,у), то на ней при n>2 образуется остроугольный треугольник, все стороны которого при a=b=1 выражены нецелыми числами: х=2n+P(1,n)/хn-1; у=2n-1+ P(1,n)/хn-1; z=2n+1+ P(1,n)/хn-1, что находит подтверждение при следующем рассмотрении добавки P(1,n)/хn-1 .

Для выяснения этого вопроса представим ее после сокращений в следующем виде

P(1,n)/хn-1=2cn3/x2 + 2cn5 /x4 +2cn7 /x6... ( 1+1)/xn-1

В числителе каждого члена разложения представлены сочетанияcnk, распределение которых симметрично, наподобие гаусовскому, относительно центра (n+1)/2. В знаменателе функция x2, возрастающая с каждым членом по квадратичному закону.

Первый член разложения, из-за малости x2 имеет наибольшую величину и может выражаться целым числом со значащими цифрами после запятой (для n=15 – 1,1…; для n=25 – 1,8…; и т.п.). Последний член имеет наименьшую величину из-за большого знаменателяxn-1(для n=3 – 2/62 ; для n=15– порядка 2/3014 ; для n=25– 2/5024 и т.п.)

Первая половина разложения по сумме значительно превышает вторую за счет резкого увеличения числителей. Все члены разложения второй половины меньше 1 за счет уменьшения числителей и дальнейшего возрастания знаменателей, и интенсовно уменьшаются по мере удаления от центра. В результате общая сумма разложения для n>14 (для n<=14 добавка <1) всегда будет определяться целыми числами со значащими цифрами после запятой, т.е. все эти числа будут нецелыми, что свидетельствует о достоверности и доказуемости теоремы Ферма.

3. Известно, что уравнение второй степениy2 + x2 =z2решается в целых числах, а её проекцией на плоскость (х,у) является прямоугольный треугольник. Можно предположить, что для более высоких степеней n найдется прямоугольная проекция, при которой решение уравнения Ферма будет происходить при целых x,y,z. Такое предположение оправдано для степени n=3 в объемных прямоугольных координатах x,y,z, в которых для уравнения (x-2a)3 +(x-a)3 +x3 =(x+b)3 , существуют целые числа 3,4,5,6 и им кратные, которые удовлетворяют условию 33 +43 +53 =63.

Физически эти числа выражают сумму кубов в целых числах, по аналогии с n=2, где сумма квадратов означает сумму площадей. По сути мы получили новый вариант теоремы Ферма.

4. Искажения проекций (треугольников) по мере возрастания n обусловлены отражением на плоскости (х,у) несвойственных ей структур более высокого порядка. Отсюда можно заключить, что решения теоремы Ферма в целых числах связаны с наличием прямоугольных проекций, а при нецелых решениях- с искаженными проекциями в виде остроугольных треугольников.


Это подтверждается следующими математическими выкладками. Предварительно решим треугольник АВС из теоремы косинусов относительно cosC, где C –угол между сторонами а и b

сosC= (a2+ b2 -c2)/2ab. Подставим вместо сторон а, bи с их аналоги из треугольных проекций при а = b =1:

а → x; b → y=x-1; c → z=x+1, гдеx=2n+P(1,n)/xn-1

После выполнения операций преобразования получим:

cosCn= 0,5-1,5/ xn-1 (7)

По полученной формуле проведены расчеты
n234510
x-135.0547.1259.20019.0..
cosC00.2020.2890.3370.4210.5
Co907873706560

Из которых следует :

- искажение треугольников при n>2 обусловлено изменением угла С от 90о при n=2 до 60о при n∞ при этом треугольники превращаются из прямоугольных в остроугольные и в пределе – в равносторонние.

- В остроугольных треугольниках нет целых решений уравнений Ферма т.к. их стороны сформированы нецелыми числами.

- Решение теоремы Ферма в целых числах присуще только прямоугольным проекциям на плоскость (х,у) числовых отрезков уравнений y2 + x2 =z2

5. Второй сектор квадранта является аналогом первого- зеркальным отражением первого при y>x со всеми вытекающими из этого результатами.

6. В процессе проведения анализа по доказательству теоремы Ферма в общем виде получены 4 компактных метода доказательства теоремы при целых x, y, когда требуется показать , что при n>2 число z является нецелым.

Первый метод доказательства следует из рассмотрения остроугольного треугольника, для которого Z02= x2 +y2 –2xycosc. Требуется доказать, что Z0является нецелым числом. В нем известны x и y – целые числа, а coscопределен с учетом ограничений a=b=1. Он изменяется в пределах 0< cosc < 0,5 (см. ф-лу (7) и табл. на стр.3) и является функцией нецелого, иррационального числа х. Значит и соsc является также нецелым числом со множеством значащих цифр после запятой. Благодаря этому нецелым становится выражение 2xycosc, что в свою очередь делает нецелым Z02 и извлеченный из него квадратный корень Z0.

В основу второго метода также заложено рассмотрение остроугольного треугольника. Его Z02= x2 +y2 –2xycoscвсегда меньше соответствующего Zп2= x2 +y2прямоугольного треугольника и числовой отрезок Z02 находится внутри числового отрезкаZп2=x2 +y2.

Учитывая, что при принятых ограничениях y=x-1, т.е. отличается на единицу, то корень, извлеченный из Z02 будет иметь нецелое значение, т.к. между числами x-1 и x нет других целых чисел.

Третий метод основан на другом принципе. Его сущность заключается в следующем.

Для последовательности целых чисел 1,2,3,4 и т.д. составляется ряд их квадратов:

1 4 9 16 25 36 4964 81 100 121 144 169 196 и т.д.

2 4 6 8 10 12 14 16 18 20 22 24 26 и т.д.

Между числами первого ряда размещается нижний ряд, представляющий собой количество целых чисел (порядковых номеров), размещенных между двумя смежными квадратами чисел x и x+1. Эти целые (и нецелые) числа z1 не могут иметь при извлечении из них корней целых значений, т.к. находятся между числами, отличающимися на единицу, а будут иметь значения x+D, где D=z1/Dx2

Учитывая, что при n>2 для остроугольных треугольников z02 всегда меньше zп2 или соответствующего Dx2 в ряду квадратов, необходимо вставить числовой отрезок z02 в числовой отрезок Dx2 и убедиться, что извлеченный корень из числа z02 является нецелым числом.

Рассмотрим доказательство на примере для n=5.

Примем: x=2n=10; y=2n-1=9;cosC=0,337 (см. Формулы 6 и 7).

z02 =102 +92-2*10*9*0,337=120,34.

В ряду квадратов это число находится между числами 100 и 121, являющимися квадратами целых чисел 10 и 11.

Кв. корень из числа 120,34 равен 10.97 – нецелое число.

Проверка: 105 +95 =159049. Корень пятой степени из числа 159049 равен 10,97. В случае необходимости z02 может быть уточнено путем повторного (многократного) определения cosC по трем известным сторонам треугольника.

Примечание. Числа ряда квадратов относятся к остроугольным треугольникам различных степеней n . Числа второго ряда, отмеченные жирным шрифтом и поделенные на 4, указывают на степень n, к которой относится пара чисел, выбранная из условия ограничения a=b=1, в соответсвии с формулой (6).

Четвертый метод основан на том, что аналогичные степенные ряды могут быть построены для любых n . Тогда для произвольно выбранной степени n=k представляется возможным непосредственно убедиться в том , что извлеченный корень степени k из числаzk =xk+ykявляется нецелым числом.

P.S. Встает вопрос: при каких условиях нецелое число 10,97... , возведенное в степень n=5 , превратится в целое число 159049 ? Напрашивается ответ: число 10.97... должно быть иррациональным т.е иметь после запятой неограниченное количество значащих цифр.

Остановимся на обосновании принятых в статье допущений (ограничений).

Принятие a=1 обусловлено получением максимальных , (*) при которых для всех a <1 нет решений уравнений Ферма в целых числах, а zn наиболее близок к 2xn.

Принятие b=1 обусловлено тем, что 1 является единственным для всех n целым числом. Это подтверждается следующими соображениями. Из уравнения (*) имеем: , откуда b£x(nÖ2-1). Подставляя вместо х его близкое целое значение 2n, получим формулуb£2n(nÖ2-1) для практических расчетов, которые свидетельствуют о том, что вблизи начала координат ( на удалении х для каждой степени n) b изменяется от 1,65 при n=2 до 0 при возрастании n до ¥. Отсюда вывод: в растворе 450 сектора всюду b является нецелым числом, исключающим получение целых x,y,z при решении уравнений (1) и (2), за исключением одной точки, где b =1, которую следует проверять на наличие решения в целых числах x,y,z, что и было проделано выше с отрицательным результатом.

Расчеты при a=b=2,3,4…. относятся к точкам на значительном удалении от начала координат, кратным коэффициентам a=2,3,4….

Результаты расчетов при этом аналогичны выполненным при а=b=1, за исключением случаев, когда х определяется целым числом с конечным числом значащих цифр после запятой. Тогда можно подобрать такой коэффициент пропорциональности а умножение на который нецелых чисел х,у,z сделает их целыми числами, для которых будет справедливо (x*a)n+(y*a)n =(z*a)n.

В этом случае теорема Ферма станет недостоверной или имеющей исключения при n>2. В принципе теорема Ферма может считаться достоверной, если добавка P(a,n)/xn-1является иррациональным числом. Тогда невозможно использовать коэффициент пропорциональности a.

В иррациональности добавкиP(1,n)/xn-1можно убедиться, если проводить многократное уточнение величины х методом последовательных приближений, ибо при делении целых числителей в добавке на нецелые, многократно уточняемые знаменатели, в составе добавки найдется хотябы один иррациональный результат деления, который превратит всю добавку в иррациональное число.

Наконец, анализируя расположение секторов на плоскости (x,y) и , учитывая, что нечетные функции xnи ynмогут принимать положительные и отрицательные значения, можно составить следующую схему расположения этих функций на плоскости (x,y), т.е. в области распостранения условий теоремы Ферма:

- вся плоскость (x,y) - для четных показателей степени n

- квадрант I - для положительных x и y

- квадрант III- для отрицательных x и y

- в квадрантах II и IVдля нечетных n будут иметь место разности типа xn- ynили yn - xn, рассмотрение которых теоремой Ферма не предусмотрено.

ВЫВОДЫ

1. Разработан метод доказательства теоремы Ферма в общем виде. Определены основное уравнение (3) и рабочие формулы (2), (5), (6), (7) для проведения анализа и расчетов.

2. Решение уравнений Ферма в нецелых числах при n>2 обусловлено образованием на плоскости (x,y) искаженных (остроугольных) проекций функции yn+ xn=zn. При проекциях в виде прямоугольных треугольников решения получаются в целых числах.

3. Теорема Ферма распространяется на всю плоскость (x,y), кроме II и IV квадрантов при нечетных n.

Николай Иванович Пичугин, ветеран ВОВ иВС,

Москва 2001 – 2004 год

Т. 396 –90-24

e –meil:hrendy@rumbler.ru


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
150141
рейтинг
icon
3155
работ сдано
icon
1367
отзывов
avatar
Математика
Физика
История
icon
145279
рейтинг
icon
5929
работ сдано
icon
2676
отзывов
avatar
Химия
Экономика
Биология
icon
101686
рейтинг
icon
2064
работ сдано
icon
1286
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
57 865 оценок star star star star star
среднее 4.9 из 5
РГСУ
Просто девушка выручила, были мелкие недочеты, сразу исправила, даже грех жаловаться!!!!
star star star star star
ДВГУПС
Отличный исполнитель!!! Рекомендую!!! Работа без замечаний!!! Преподаватель принял к защит...
star star star star star
Московский Университет имени С.Ю. Витте
Спасибо за выполненную работу, оценка отлично, советую обращайтесь к этому исполнителю!!! ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить 3 брифа

Другое, Технологии рекламы и связей с общественностью

Срок сдачи к 19 янв.

2 минуты назад

Решить задачу в ворд файле

Решение задач, Эконометрика

Срок сдачи к 19 янв.

10 минут назад

Курсовая по охране природы

Курсовая, Охрана природы

Срок сдачи к 5 февр.

12 минут назад

Написать ВКР на тему видеоигровой субкультуры

Диплом, Культурология

Срок сдачи к 21 февр.

12 минут назад

Необходимо решить задачу по теории гравитации

Решение задач, Теория гравитации

Срок сдачи к 21 янв.

12 минут назад

Решить 4 задачи по физике

Решение задач, Физика

Срок сдачи к 19 янв.

12 минут назад

тема курсовой: отличия убийства, совершенного по найму, от убийства из корыстных побуждений

Курсовая, Правовые основы квалификации преступлений

Срок сдачи к 7 февр.

12 минут назад
12 минут назад

Решить задачи по 3 темам: жесткая рама, движение точки, закон сохранения импульса.

Решение задач, теоретическая механика

Срок сдачи к 21 янв.

12 минут назад

Мировоззренческие принципы (константы) россии?скои? цивилизации.

Презентация, Основы российской государственности

Срок сдачи к 29 янв.

12 минут назад

Алиментные правоотношения

Реферат, семейное право

Срок сдачи к 19 янв.

12 минут назад

Сделать до вечера понедельника

Решение задач, теория вероятности

Срок сдачи к 20 янв.

12 минут назад

«Образ Медеи – матери и жены, внутренний конфликт в одноименной...

Эссе, История зарубежной литературы

Срок сдачи к 19 янв.

12 минут назад

Дневник по практике

Отчет по практике, менеджмент организации

Срок сдачи к 21 янв.

12 минут назад

Нужно решить контрольную по теме «Матрицы и...

Контрольная, Высшая математика

Срок сдачи к 21 янв.

12 минут назад

ВоВ

Рецензия, История

Срок сдачи к 19 янв.

12 минут назад

курсовая по эконометрике

Курсовая, Эконометрика

Срок сдачи к 10 февр.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно