Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Численное решение модельного уравнения

Тип Реферат
Предмет Математика
Просмотров
374
Размер файла
183 б
Поделиться

Ознакомительный фрагмент работы:

Численное решение модельного уравнения

диссипации, конвекции и кинетики

СОДЕРЖАНИЕ

1. Общая постановка задачи

2. Постановка тестовых задач

3. Методика решения тестовых задач

4. Результаты вычислений

Список литературы

Приложения

Приложение 1: Описание программы

Приложение 2: Текст программы

1. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ

Перенос тепла (или вещества) теплопроводностью (для вещества соответственно диффузией) и конвекцией описывается дифференциальным уравнением параболического типа:

( 1 )

где температура (или концентрация). Пусть являются некоторыми константами и . Уравнение (1) при указанных выше предположениях называется модельным уравнением диссипации, конвекции и кинетики. Слагаемые правой части имеют следующий физический смысл:

- соответствует переносу тепла теплопроводностью (или вещества диффузией);

- соответствует конвективному переносу;-

- "кинетический член", соответствует источнику, пропорционально-

му температуре или концентрации;

- интенсивность внешних источников или стоков.

В дальнейшем будем рассматривать только тепловую интерпретацию уравнения (1).

Численное решение уравнения (1) будем искать в области :

( 2 )

при заданных начальных значениях температуры: ( 3 )

и граничных условиях.

Граничные условия описывают режимы теплообмена с внешней средой:

при ;

при .

2. ПОСТАНОВКА ТЕСТОВЫХ ЗАДАЧ

В качестве тестовых задач для температуры мною были выбраны следующие пять функций:

( 9 )

( 10 )

( 11 )

( 12 )

( 13 )

Для функции (9) имеем:

Для функции (10):

Для функции (11):

Для функции (12):

Для функции (13):

Данные функции тестировались на отрезке по X: [0, 1], по времени: [0, 1], с количеством разбиений по этим отрезкам - 30.

3. МЕТОДИКА РЕШЕНИЯ ТЕСТОВЫХ ЗАДАЧ

Данная задача решается с помощью двухслойной неявно конечно-разностной схемы.

Схема реализуется в три этапа.

1 этап: находятся предварительные значения с помощью 4-х точечной неявной схемы:

( 5 )

2 этап: используется за два шага. Сначала находятся на полученном слое () с шагом , а затем через . В этом случае используется 4-х точечная неявная разностная схема:

( 6 )

( 7 )

3 этап: окончательные значения находятся в виде линейной комбинации двух предварительных значений:

( 8 )

Для решения (1) воспользуемся формулами (5) - (8). Данные уравнения представляют трех диагональные матрицы, решаемые методом скалярной прогонки.

В начале нужно преобразовать (5) – (7) к виду:

( 14 )

Тогда (5) примет вид:

Т.е. ;

;

;

.

Формула (6) преобразуется в:

Т.е. ;

;

;

.

Формула (7) преобразуется в:

Т.е. ;

;

;

.

Далее решаем по формулам скалярной прогонки:

( 15 )

( 16 )

Для определения , и воспользуемся данными граничными условиями, т.е. формулой (4) и функцией . Так если мы берём из формулы (9), то имеем:

Приведём это выражение к виду: .

Т.е. теперь мы имеем и :

Далее найдем конечное :

( 18 )

Проведя аналогичные расчёты для заданных формулами (10) – (13), мы получим соответствующие , и . Далее мы можем решить системы методом прогонки и получить требуемый результат.

4. РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

В результате проведённых испытаний программа показала свою высокую надёжность. Были получены следующие данные.

При расчёте с использованием функции и входных данных ; ; ; ; ; ; на отрезке по X и по времени [0,1] с шагом 0,033 был получен результат с ошибкой равной 0,0675.

Для функции при ; ; ; ; ; ; , на том же промежутке, ошибка составляет 0,055.

С функцией и ; ; ; ; ; ; ошибка примет значение 0,0435.

При и условиях ; ; ; ; ; ; в результате возникает ошибка равная 0,0055.

И, наконец, если выбрана функция и ; ; ; ; ; ; , то ошибка составит 0,00255.

Т.е. можно сказать, что мы имеем результат с первым порядком точности. Столь малую точность можно объяснить тем, что производная, найденная при граничных условиях, так же имеет первый порядок точности.

СПИСОК ЛИТЕРАТУРЫ

1. А. Епанешников, В. Епанешников Программирование в среде Turbo-Pascal 7.0. - М.: Диалог - Мифи, 1996. - 288 с.

2. Петухова Т. П., Сибирцев В. В. Пакет прикладных программ для численного моделирования процессов тепло- и массопереноса. – Караганда: Изд-во КарГУ. 1993

3. Фигурнов В. Э.IBMPC для пользователя. - М.: Инфра - М, 1995. - 432 с.

Приложение 1

ОПИСАНИЕ ПРОГРАММЫ

Поставленная задача была программно реализована на языке программирования Turbo-Pascal 7.0.

В состав программы входят следующие файлы:

basis.pas - PAS-файл основной части программы

(решение системы уравнений методом скалярной прогонки);

basis.v&v - EXE-файл основной части программы (вызывается из START.PAS);

fun.bmp - BMP-фаил с изображением функций;

inform.v&v - TXT-фаил с информацией о программе (вызывается из START.PAS);

music.v&v - музыкальный EXE-фаил (вызывается из START.PAS);

my_menu.pas - UNIT для создания меню;

sea.exe - программа для просмотра графических файлов;

start.pas - файл для запуска всей программы;

u - файл с результатами работы;

zastavka.v&v - EXE-фаил с заставкой к основной программе

(вызывается из START.PAS).

Файл START является, как бы оболочкой программы, из которой вызываются другие файлы. Сам процесс решения содержится в файле BASIS.

BASIS содержит следующие процедуры и функции:

Function Fun_U (Xm,t:real):real;

Вход: значение по X и значение по времени t, а также глобальная переменная выбранной

функции SelectFunction.

Действие: вычисляет точное значение функции U при заданных X и t.

Выход: Fun_U – значение функции.

Function Fun_F (Xm,t,a,b,v:real):real;

Вход: значение по X, по времени t, коэффициенты , , и номер выбранной функции

SelectFunction.

Действие: вычисляет значение функции F при заданных X, t, , , .

Выход: Fun_F – значение функции F.

Function Betta_Zero (time:real): real;

Вход: значение времени t и глобальные коэффициенты , , , номер выбранной

функции SelectFunction.

Действие: вычисляет , используемое в методе скалярной прогонки.

Выход: Betta_Zero – значение .

Function U_End (time,Alf,Bet:real): real;

Вход: значение времени t, , и глобальные коэффициенты , , , номер выбран-

нойфункции SelectFunction.

Действие: вычисляет используемое в методе скалярной прогонки.

Выход: U_End – значение .

Procedure PrintArray;

Вход: использует глобальный массив данных U_m.

Действие: выдает содержимое U_m на экран и в файл.

Выход: вывод U_m.

Приложение 2

ТЕКСТ ПРОГРАММ Ы

Основная часть программы выглядит так:

Program Basis;

Uses Crt; { Подключениебиблиотек }

Label Metka1,Metka2; { Метки }

Var

a, b, v : real; { Коэффициенты, задаются пользователем }

h, tau : real; { Шаг по X и по времени соответственно }

X,x0 : real; { Конечное и начальное значение X }

m,n,k : word; { Переменные используемые в циклах для расчета }

T,t0 : real; { Конечное и начальное значение времени }

Kol_voX, Kol_voT : word; { Количество разбиений по X и по времени }

U_m,U_,_U_1_2,_U_1 : array [0..200] of real; { Массивы результатов }

z : array [0..200] of real; { Массив точных решений }

Xm : real; { Промежуточный X }

Alfa,Betta : array [0..200] of real; { Массив коэффициентов используемых при скалярной прогонке }

a_progonka, b_progonka, c_progonka, d_progonka : real; { Коэффициенты для скалярной прогонки }

Error : real; { Значение ошибки }

time : real; { Переменная времени }

ch : char; { Код нажатой клавиши }

SelectFunction:word; { Номер выбранной функции }

U : text; { Переменная для вывода результата в файл }

Alfa_1,Alfa_2,Betta_1,Betta_2 : real; { Коэффициенты граничных условий }

Data : word; { Переменная режима ввода начальных данных }

Function Fun_U (Xm,t:real):real; { Функция U (точное решение) }

begin

If SelectFunction=1 then Fun_U:=SQR(Xm)*Xm+SQR(t);

If SelectFunction=2 then Fun_U:=SQR(Xm)*SQR(t)*t+10*Xm*t+SQR(SQR(t))*Xm;

If SelectFunction=3 then Fun_U:=Xm*SIN(Xm*t)-4*SQR(Xm)*COS(t);

If SelectFunction=4 then Fun_U:=t*EXP(Xm);

If SelectFunction=5 then Fun_U:=SIN(Xm)+EXP(t);

end;

Function Fun_F (Xm,t,a,b,v:real):real; { Функция F }

begin

if SelectFunction=1 then Fun_F:=2*t-v*6*Xm+a*3*SQR(Xm)-b*(SQR(Xm)*Xm+SQR(t));

if SelectFunction=2 then Fun_F:=3*SQR(Xm)*SQR(t)+10*Xm+4*SQR(t)*t*Xm-v*2*SQR(t)*t+

a*(2*Xm*SQR(t)*t+10*t+SQR(SQR(t)))-b*(SQR(Xm)*SQR(t)*t+10*Xm*t+Xm*SQR(SQR(t)));

if SelectFunction=3 then Fun_F:=SQR(Xm)*COS(Xm*t)+4*SQR(Xm)*SIN(t)-v*(2*COS(Xm*t)*t-

Xm*SIN(Xm*t)*SQR(t)-8*COS(t))+a*(SIN(Xm*t)+Xm*t*COS(Xm*t)-8*COS(t)*Xm)-

b*(Xm*SIN(Xm*t)-4*SQR(Xm)*COS(t));

if SelectFunction=4 then Fun_F:=EXP(Xm)-v*(t*EXP(Xm))+a*(t*EXP(Xm))-b*(t*EXP(Xm));

if SelectFunction=5 then Fun_F:=EXP(t)-v*(-SIN(Xm))+a*(COS(Xm))-b*(SIN(Xm)+EXP(t));

end;

Function Betta_Zero (time:real): real; { Функция Betta[0] дляпрогонки }

begin

If SelectFunction=1 then Betta_Zero:=(h/(Betta_1*h-Alfa_1))*(Alfa_1*3*SQR(x0)+

Betta_1*(SQR(x0)*x0+SQR(time)));

If SelectFunction=2 then Betta_Zero:=(h/(Betta_1*h-Alfa_1))*(Alfa_1*(2*x0*SQR(time)*time+

10*time+SQR(SQR(time)))+Betta_1*(SQR(x0)*SQR(time)*time+10*x0*time+SQR(SQR(time))*x0));

If SelectFunction=3 then Betta_Zero:=(h/(Betta_1*h-Alfa_1))*(Alfa_1*(SIN(x0*time)+

x0*time*COS(x0*time)-8*x0*COS(time))+Betta_1*(x0*SIN(x0*time)-4*SQR(x0)*COS(time)));

If SelectFunction=4 then Betta_Zero:=(h/(Betta_1*h-Alfa_1))*(Alfa_1*(time*EXP(x0))+

Betta_1*(time*EXP(x0)));

If SelectFunction=5 then Betta_Zero:=(h/(Betta_1*h-Alfa_1))*(Alfa_1*(COS(x0))+

Betta_1*(SIN(x0)+EXP(time)));

end;

Function U_End (time,Alf,Bet:real): real; { Функция Um дляпрогонки }

begin

If SelectFunction=1 then U_End:=(Alfa_2*h*3*SQR(X)+Betta_2*h*(SQR(X)*X+SQR(time))

+ Bet*Alfa_2)/(Alfa_2-Alf*Alfa_2+h*Betta_2);

If SelectFunction=2 then U_End:=(Alfa_2*h*(2*X*SQR(time)*time+10*time+SQR(SQR(time)))+

Betta_2*h*(SQR(X)*SQR(time)*time+10*X*time+SQR(SQR(time))*X)

+Bet*Alfa_2)/(Alfa_2-Alf*Alfa_2+h*Betta_2);

If SelectFunction=3 then U_End:=(Alfa_2*h*(SIN(X*time)+X*time*COS(X*time)-8*X*COS(time))+

Betta_2*h*(X*SIN(X*time)-4*SQR(X)*COS(time))+Bet*Alfa_2)/(Alfa_2-Alf*Alfa_2+h*Betta_2);

If SelectFunction=4 then U_End:=(Alfa_2*h*(time*EXP(X))+Betta_2*h*(time*EXP(X))+Bet*Alfa_2)/

(Alfa_2-Alf*Alfa_2+h*Betta_2);

If SelectFunction=5 then U_End:=(Alfa_2*h*(COS(X))+Betta_2*h*(SIN(X)+EXP(time))+Bet*Alfa_2)/

(Alfa_2-Alf*Alfa_2+h*Betta_2);

end;

Procedure PrintArray; { Процедурапечатимассива U }

begin

WriteLn; For m:=0 to Kol_voX do begin Write(U_m[m]:15:4); Write(U,U_m[m]:15:4); end;

WriteLn; WriteLn(U);

end;

{ Основная программа }

Begin

Assign(U,'u'); { Файл для записи значений функции }

Rewrite(U); { Открытие файла для записи }

TextBackGround(0); { Выбор функции для работы }

ClrScr; TextColor(10); GoToXY(20,8); Write('Введите номер выбранной функции (1-5):');

Metka1: ch:=ReadKey;

If ch='1' then SelectFunction:=1

else If ch='2' then SelectFunction:=2

else If ch='3' then SelectFunction:=3

else If ch='4' then SelectFunction:=4

else If ch='5' then SelectFunction:=5

else

begin

Sound(400); Delay(100); NoSound; GoTo Metka1;

end;

GoToXY(59,8);TextColor(12);WriteLn(SelectFunction); TextColor(11); GoToXY(11,12);

Write('Вы будете работать со стандартными параметрами (цифра ~1~)');

GoToXY(22,13); Write('или введете свои данные (цифра ~2~) ?');

Metka2: ch:=ReadKey;

If ch='1' then Data:=1

else If ch='2' then Data:=2

else

begin

Sound(400); Delay(100); NoSound; GoTo Metka2;

end;

TextBackGround(9); TextColor(10); ClrScr;

{ Ввод начальных данных }

WriteLn; WriteLn('-------------------------------- Вводданных ---------------------------------¬');

For k:=1 do 21 do WriteLn('¦ ¦');

WriteLn('L------------------------------------------------------------------------------');

TextColor(15); Window(3,3,77,23); Write(' Введите область рассчета по X от: ');

If Data=1 then

begin

x0:=0; Write(x0:1:0); WriteLn;

end

else ReadLn(x0);

Write(' до: ');

If Data=1 then

begin

X:=1; Write(X:1:0); WriteLn;

end

else ReadLn(X);

WriteLn; Write(' Введите количество разбиений по направлению X: ');

If Data=1 then begin Kol_voX:=30; Write(Kol_voX:2); WriteLn; end else ReadLn(Kol_voX);

WriteLn;WriteLn; Write(' Введите область рассчета по времени от: ');

If Data=1 then begin t0:=0; Write(t0:1:0); WriteLn; end else ReadLn(t0);

Write(' до: ');

If Data=1 then begin T:=1; Write(T:1:0); WriteLn; end else ReadLn(T);

WriteLn; Write(' Введите количество разбиений по времени: ');

If Data=1 then begin Kol_voT:=30; Write(Kol_voT:2); WriteLn; end else ReadLn(Kol_voT);

WriteLn;WriteLn; WriteLn(' Введитекоэффициенты'); Write(' a=');

If Data=1 then begin a:=1; Write(a:1:0); WriteLn; end else ReadLn(a);

Write(' b=');

If Data=1 then begin b:=1; Write(b:1:0); WriteLn; end else ReadLn(b);

Write(' v=');

If Data=1 then begin v:=0.001; Write(v:1:3); WriteLn; end else ReadLn(v);

Write(' Alfa-1=');

If Data=1 then begin Alfa_1:=1; Write(Alfa_1:1:0); WriteLn; end else ReadLn(Alfa_1);

Write(' Betta-1=');

If Data=1 then begin Betta_1:=1; Write(Betta_1:1:0); WriteLn; end else ReadLn(Betta_1);

Write(' Alfa-2=');

If Data=1 then begin Alfa_2:=1; Write(Alfa_2:1:0); WriteLn; end else ReadLn(Alfa_2);

Write(' Betta-2=');

If Data=1 then begin Betta_2:=1; Write(Betta_2:1:0); WriteLn;TextColor(14);

Write(' Нажмителюбуюклавишу'); ReadKey; end else ReadLn(Betta_2);

{ Интерфейс экрана при выдаче результата }

TextBackGround(3); TextColor(1); Window(1,1,80,25); ClrScr; WriteLn;

WriteLn('г===================== Результат ==========================¬');

For k:=1 to 21 do

WriteLn('¦ ¦');

WriteLn('===================================================================-');

TextColor(0); TextBackGround(7); GoToXY(2,23);

WriteLn(' Дляпродолжениянажмителюбуюклавишу'); TextBackGround(3); Window(3,4,77,22);

TextColor(15); ClrScr;

{ Вычеслениешагасетки }

tau:=(T-t0)/Kol_voT; h:=(X-x0)/Kol_voX;

{ Ввод данных при time=t0 }

For m:=0 to Kol_voX do

begin

Xm:=x0+h*m; U_m[m]:=Fun_U(Xm,t0);

end;

TextColor(14); WriteLn('Времяравно ',time:3:3); TextColor(15); WriteLn(U,'Времяравно ',time:3:3);

PrintArray;

{ Начало рассчета }

time:=t0;

Repeat

time:=time+tau;

WriteLn; TextColor(14); WriteLn('Времяравно ',time:3:3); TextColor(15);

WriteLn(U,'Времяравно ',time:3:3);

{ 1 этап. Решается методом скалярной прогонки }

a_progonka:=(-2*v-a*h)/(2*SQR(h)); b_progonka:=(SQR(h)+2*v*tau-b*tau*SQR(h))/(SQR(h)*tau);

c_progonka:=(a*h-2*v)/(2*SQR(h));

Alfa[0]:=Alfa_1/(Alfa_1-Betta_1*h); Betta[0]:=Betta_Zero(time);

For m:=1 to Kol_voX-1 do

begin

Alfa[m]:=-c_progonka/(a_progonka*Alfa[m-1]+b_progonka);

Betta[m]:=(Fun_F(x0+m*h,time+tau,a,b,v)+U_m[m]/tau-a_progonka*Betta[m-1])/

(a_progonka*Alfa[m-1]+b_progonka);

end;

U_[Kol_voX]:=U_End(time,Alfa[Kol_voX-1],Betta[Kol_voX-1]);

For m:=Kol_voX-1 downto 1 do U_[m]:=Alfa[m]*U_[m+1]+Betta[m];U_[0]:=Alfa[0]*U_[1]+Betta[0];

{ 2 этап, часть первая. Решается методом скалярной прогонки }

a_progonka:=(-2*v-a*h)/(2*SQR(h)); b_progonka:=(2*SQR(h)+2*v*tau-b*tau*SQR(h))/(SQR(h)*tau);

c_progonka:=(a*h-2*v)/(2*SQR(h));

Alfa[0]:=Alfa_1/(Alfa_1-Betta_1*h); Betta[0]:=Betta_Zero(time);

For m:=1 to Kol_voX-1 do

begin

Alfa[m]:=-c_progonka/(a_progonka*Alfa[m-1]+b_progonka);

Betta[m]:=(Fun_F(x0+m*h,time+tau/2,a,b,v)+2*U_m[m]/tau-a_progonka*Betta[m-1])/

(a_progonka*Alfa[m-1]+b_progonka);

end;

_U_1_2[Kol_voX]:=U_End(time,Alfa[Kol_voX-1],Betta[Kol_voX-1]);

For m:=Kol_voX-1 downto 1 do _U_1_2[m]:=Alfa[m]*_U_1_2[m+1]+Betta[m];

_U_1_2[0]:=Alfa[0]*_U_1_2[1]+Betta[0];

{ 2 этап, часть вторая. Решается методом скалярной прогонки }

a_progonka:=(-2*v-a*h)/(2*SQR(h)); b_progonka:=(2*SQR(h)+2*v*tau-b*tau*SQR(h))/(SQR(h)*tau);

c_progonka:=(a*h-2*v)/(2*SQR(h));

Alfa[0]:=Alfa_1/(Alfa_1-Betta_1*h); Betta[0]:=Betta_Zero(time);

For m:=1 to Kol_voX-1 do

begin

Alfa[m]:=-c_progonka/(a_progonka*Alfa[m-1]+b_progonka);

Betta[m]:=(Fun_F(x0+m*h,time+tau,a,b,v)+2*_U_1_2[m]/tau-a_progonka*Betta[m-1])/

(a_progonka*Alfa[m-1]+b_progonka);

end;

_U_1[Kol_voX]:=U_End(time,Alfa[Kol_voX-1],Betta[Kol_voX-1]);

For m:=Kol_voX-1 downto 1 do _U_1[m]:=Alfa[m]*_U_1[m+1]+Betta[m];

_U_1[0]:=Alfa[0]*_U_1[1]+Betta[0];

{ 3 этап. Окончательное значение }

For m:=0 to Kol_voX do

U_m[m]:=2*_U_1[m]-U_[m];

PrintArray; { Вывод результата на экран и его запись в файл }

For m:=0 to Kol_voX do { Рассчет точного значения функции }

begin z[m]:=Fun_U(x0+m*h,time); end;

{ Вывод ошибки расчета на экран и в файл }

Error:=0;

For m:=0 to Kol_voX do

begin

a:=Abs(U_m[m]-z[m]); If Error<a then Error:=a;

end;

WriteLn; TextColor(4); WriteLn('Максимальная ошибка для этого времени равна ',Error:10:7);

TextColor(15); WriteLn(U,'Максимальная ошибка для этого времени равна ',Error:15:13);

WriteLn(U); ReadKey;

Until time>T;

Close(U); { Закрытие файла с результатами }

End.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно