Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод касательных (метод Ньютона)

Тип Реферат
Предмет Информатика и программирование
Просмотров
1188
Размер файла
51 б
Поделиться

Ознакомительный фрагмент работы:

Метод касательных (метод Ньютона)

Содержание

Содержание. 1

Используемая литература. 1

Метод Ньютона (касательных). 2

Описание. 2

Блок-схема алгоритма. 3

Листинг программы.. 4

Результаты работы программы.. 6

Пример №1. 6

Пример №2. 6

Пример №3. 7

Метод итераций. 8

Блок-схема алгоритма. 8

Листинг программы.. 9

Результаты работы программы.. 11

Пример №1. 11

Пример №2. 11

Пример №3. 12

Используемая литература

1. http://www.kyshtym.net.ru/rww/ Учимся программировать на С++

2. http://www.sprin.ru/soft.php Решение линейных уравнений методом Ньютона (касательных)

Метод Ньютона (касательных).

Описание

В рамках метода Ньютона предполагается, что функция дифференцируема. Согласно этому методу строится линейная аппроксимация функции в начальной точке, а точка, в которой аппроксимирующая линейная функция обращается в нуль, принимается в качестве следующего приближения.

Итерационый процесс схождения к корню реализуется формулой:
xn+1=xn-f(xn)/f '(xn). Вычисления продолжаются пока соблюдается условие
|xn+1-xn |>=eps.

В зависимости от выбора начальной точки и вида функции алгоритм по методу Ньютона может как сходиться к корню уравнения, так и расходиться.

Ниже приведена блок-схема алгоритма и листинг программы, реализующей данный алгоритм на языке С++. Также привожу текст, которая выдает данная программа при решении исходного уравнения.

Блок-схема алгоритма

Листинг программы

//метод Ньютона для решения кубических уравнений

#include<math.h>

#include<iostream.h>

double a[4]={0},

b[3]={0},

c[2]={0},

prec=0.00000;

double minim=0, maxim=0;

void Hello(void);

void Input();

void Derivative();

void Calculation();

double Calc_Fun(double);

double Calc_First(double);

double Calc_Second(double);

main(void)

{

Hello();

Input();

Derivative();

Calculation();

return 0;

}

void Hello(void)

{

cout<<"Программа для решения кубических уравнений методом касательных (метод Ньютона).nn";

}

void Input()

{

cout<<"Кубическое уравнение имеет вид"<<endl

<<"a1*x^3+a2*x^2+a3*x+a4=0"<<endl<<endl;

for (int i=0;i<4;i++)

{

cout<<"Введите значение коэффициента a["<<i+1<<"] : ";

cin>>a[i];

}

cout<<endl<<"Необходимо указать интервал поиска решения."<<endl

<<"Введите нижнюю границу поиска : ";

cin>>minim;

cout<<"Введите верхнюю границу поиска : ";

cin>>maxim;

while(minim==maxim||minim>maxim)

{

cout<<"nНижняя граница должна быть меньше верхней и не может быть ей равна."<<endl

<<"Повторите ввод нижней границы : ";

cin>>minim;

cout<<"Повторите ввод верхней границы : ";

cin>>maxim;

}

cout<<"Введите допустимую погрешность : ";

cin>>prec;

}

void Derivative()

{

b[0]=a[0]*3;

b[1]=a[1]*2;

b[2]=a[2];

c[0]=b[0]*2;

c[1]=b[1];

cout<<"nnn"

<<"Исходное уравнение имеет вид : nn"

<<a[0]<<"x^3+("<<a[1]<<")x^2+("<<a[2]<<")x+("<<a[3]<<")=0nn"

<<"Первая производная имеет вид : nn"

<<"f'(x)="<<b[0]<<"x^2+("<<b[1]<<")x+("<<b[2]<<")nn"

<<"Вторая производная имеет вид : nn"

<<"f''(x)="<<c[0]<<"x+("<<c[1]<<")nn";

}

void Calculation()

{

double x=0, m=0;

cout<<"-------------------------------------------------"<<endl

<<"| Xn | f(Xn) | |f(Xn)|/m |"<<endl

<<"-------------------------------------------------"<<endl;

if (abs(Calc_Fun(minim))*abs(Calc_Second(minim))>0) x=minim;

else x=maxim;

if (Calc_First(minim)>Calc_First(maxim)) m=abs(Calc_First(maxim));

else m=abs(Calc_First(minim));

cout<<"|";

cout.width(15);cout.precision(10);

cout<<x;

cout<<"|";

cout.width(15);cout.precision(10);

cout<<Calc_Fun(x);

cout<<"|";

cout.width(15);cout.precision(10);

cout<<(fabs(Calc_Fun(x))/m);

cout<<"|n";

while((fabs(Calc_Fun(x))/m)>prec)

{

x=(x-(Calc_Fun(x)/Calc_First(x)));

cout<<"|";

cout.width(15);cout.precision(10);

cout<<x;

cout<<"|";

cout.width(15);cout.precision(10);

cout<<Calc_Fun(x);

cout<<"|";

cout.width(15);cout.precision(10);

cout<<fabs(Calc_Fun(x))/m;

cout<<"|n";

}

cout<<"-------------------------------------------------";

}

double Calc_Fun(double x)

{

return (a[0]*x*x*x+a[1]*x*x+a[2]*x+a[3]);

}

double Calc_First(double x)

{

return (b[0]*x*x+b[1]*x+b[2]);

}

double Calc_Second(double x)

{

return (c[0]*x+c[1]);

}

Результаты работы программы

Пример №1

Программа для решения кубических уравнений методом касательных (метод Ньютона).

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решения.

Введите нижнюю границу поиска : -4

Введите верхнюю границу поиска : -3

Введите допустимую погрешность : 0.00005

Исходное уравнение имеет вид :

1x^3+(-6)x^2+(-9)x+(58)=0

Первая производная имеет вид :

f'(x)=3x^2+(-12)x+(-9)

Вторая производная имеет вид :

f''(x)=6x+(-12)

-------------------------------------------------

| Xn | f(Xn) | |f(Xn)|/m |

-------------------------------------------------

| -4| -66| 1.222222222|

| -3.24137931| -9.922506048| 0.183750112|

| -3.079817529| -0.40621762| 0.007522548518|

| -3.07261683|-0.000789793230|1.462580056e-05|

-------------------------------------------------

Пример №2

Программа для решения кубических уравнений методом касательных (метод Ньютона).

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решения.

Введите нижнюю границу поиска : 3

Введите верхнюю границу поиска : 4

Введите допустимую погрешность : 0.00005

Исходное уравнение имеет вид :

1x^3+(-6)x^2+(-9)x+(58)=0

Первая производная имеет вид :

f'(x)=3x^2+(-12)x+(-9)

Вторая производная имеет вид :

f''(x)=6x+(-12)

-------------------------------------------------

| Xn | f(Xn) | |f(Xn)|/m |

-------------------------------------------------

| 3| 4| 0.4444444444|

| 3.222222222| 0.159122085| 0.01768023167|

| 3.231855174| 0.000341137633|3.790418145e-05|

-------------------------------------------------

Пример №3

Программа для решения кубических уравнений методом касательных (метод Ньютона).

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решения.

Введите нижнюю границу поиска : 5

Введите верхнюю границу поиска : 6

Введите допустимую погрешность : 0.00005

Исходное уравнение имеет вид :

1x^3+(-6)x^2+(-9)x+(58)=0

Первая производная имеет вид :

f'(x)=3x^2+(-12)x+(-9)

Вторая производная имеет вид :

f''(x)=6x+(-12)

-------------------------------------------------

| Xn | f(Xn) | |f(Xn)|/m |

-------------------------------------------------

| 6| 4| 0.6666666667|

| 5.851851852| 0.2601229487| 0.04335382479|

| 5.840787634| 0.001413241032| 0.000235540172|

| 5.840726862|4.255405933e-08|7.092343222e-09|

-------------------------------------------------

Метод итераций.

Блок-схема алгоритма

Блок-схема решения и листинг программы, реализующей этот алгоритм на языке программирования С++.

Листинг программы

//метод итераций для решения кубических уравнений

#include<math.h>

#include<iostream.h>

double a[4]={0},

b[3]={0},

prec=0.00000;

double minim=0, maxim=0;

void Hello(void);

void Input();

void Derivative();

void Calculation();

double Calc_Fun(double);

double Calc_First(double);

main(void)

{

Hello();

Input();

Derivative();

Calculation();

return 0;

}

void Hello(void)

{

cout<<"Программа для решения кубических уравнений методом итераций.nn";

}

void Input()

{

cout<<"Кубическое уравнение имеет вид"<<endl

<<"a1*x^3+a2*x^2+a3*x+a4=0"<<endl<<endl;

for (int i=0;i<4;i++)

{

cout<<"Введите значение коэффициента a["<<i+1<<"] : ";

cin>>a[i];

}

cout<<endl<<"Необходимо указать интервал поиска решения."<<endl

<<"Введите нижнюю границу поиска : ";

cin>>minim;

cout<<"Введите верхнюю границу поиска : ";

cin>>maxim;

while(minim==maxim||minim>maxim)

{

cout<<"nНижняя граница должна быть меньше верхней и не может быть ей

равна." <<endl

<<"Повторите ввод нижней границы : ";

cin>>minim;

cout<<"Повторите ввод верхней границы : ";

cin>>maxim;

}

cout<<"Введите допустимую погрешность : ";

cin>>prec;

}

void Derivative()

{

b[0]=a[0]*3;

b[1]=a[1]*2;

b[2]=a[2];

}

void Calculation()

{

double x=0, x_old=0, m=0;

cout<<"-------------------------------------------------"<<endl

<<"| Xn | f(Xn) | X(n+1)-Xn |"<<endl

<<"-------------------------------------------------"<<endl;

if(fabs(Calc_First(minim))>fabs(Calc_First(maxim))) m=x=x_old=minim;

else m=x=x_old=maxim;

m=fabs(1/Calc_First(m));

cout<<"|";

cout.width(15);cout.precision(10);

cout<<x;

cout<<"|";

cout.width(15);cout.precision(10);

cout<<Calc_Fun(x);

cout<<"| |n";

if(Calc_First(x)>0)

{

do

{

x_old=x;

x=x_old-m*Calc_Fun(x_old);

cout<<"|";

cout.width(15);cout.precision(10);

cout<<x;

cout<<"|";

cout.width(15);cout.precision(10);

cout<<Calc_Fun(x);

cout<<"|";

cout.width(15);cout.precision(10);

cout<<fabs( Calc_Fun(x) - Calc_Fun(x_old) );

cout<<"|n";

}

while(( fabs( Calc_Fun(x) - Calc_Fun(x_old) ) )>prec);

}

else

{

do

{

x_old=x;

x=x_old+m*Calc_Fun(x_old);

cout<<"|";

cout.width(15);cout.precision(10);

cout<<x;

cout<<"|";

cout.width(15);cout.precision(10);

cout<<Calc_Fun(x);

cout<<"|";

cout.width(15);cout.precision(10);

cout<<fabs( Calc_Fun(x) - Calc_Fun(x_old) );

cout<<"|n";

}

while(( fabs( Calc_Fun(x) - Calc_Fun(x_old) ) )>prec);

}

cout<<"-------------------------------------------------";

}

double Calc_Fun(double x)

{

return (a[0]*x*x*x+a[1]*x*x+a[2]*x+a[3]);

}

double Calc_First(double x)

{

return (b[0]*x*x+b[1]*x+b[2]);

}

Результаты работы программы

Пример №1

Программа для решения кубических уравнений методом итераций.

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решения.

Введите нижнюю границу поиска : -4

Введите верхнюю границу поиска : -3

Введите допустимую погрешность : 0.00005

-------------------------------------------------

| Xn | f(Xn) | X(n+1)-Xn |

-------------------------------------------------

| -4| -66| |

| -3.24137931| -9.922506048| 56.07749395|

| -3.127327517| -3.12093462| 6.801571427|

| -3.091454705| -1.064778438| 2.056156183|

| -3.079215872| -0.372281515| 0.6924969227|

| -3.074936774| -0.131239433| 0.241042082|

| -3.073428275| -0.04639844126| 0.08484099175|

| -3.07289496| -0.01642029825| 0.02997814301|

| -3.072706221|-0.005813178631| 0.01060711962|

| -3.072639403|-0.002058264249| 0.003754914382|

| -3.072615744|-0.000728799396| 0.001329464852|

| -3.072607367|-0.000258060628|0.0004707387678|

| -3.072604401|-9.137721784e-0|0.0001666834108|

| -3.072603351|-3.235601088e-0|5.902120696e-05|

| -3.072602979|-1.145703711e-0|2.089897377e-05|

-------------------------------------------------

Пример №2

Программа для решения кубических уравнений методом итераций.

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решения.

Введите нижнюю границу поиска : 3

Введите верхнюю границу поиска : 4

Введите допустимую погрешность : 0.00005

-------------------------------------------------

| Xn | f(Xn) | X(n+1)-Xn |

-------------------------------------------------

| 3| 4| |

| 3.222222222| 0.159122085| 3.840877915|

| 3.231062338| 0.01338370012| 0.1457383849|

| 3.231805877| 0.001151957391| 0.01223174272|

| 3.231869875|9.934183961e-05| 0.001052615552|

| 3.231875394|8.568402322e-06|9.077343728e-05|

| 3.23187587|7.390497921e-07| 7.82935253e-06|

-------------------------------------------------

Пример №3

Программа для решения кубических уравнений методом итераций.

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решения.

Введите нижнюю границу поиска : 5

Введите верхнюю границу поиска : 6

Введите допустимую погрешность : 0.00005

-------------------------------------------------

| Xn | f(Xn) | X(n+1)-Xn |

-------------------------------------------------

| 6| 4| |

| 5.851851852| 0.2601229487| 3.739877051|

| 5.842217669| 0.0346921878| 0.2254307609|

| 5.840932773| 0.004788677115| 0.02990351069|

| 5.840755414|0.0006639855431| 0.004124691572|

| 5.840730822|9.212373716e-05|0.0005718618059|

| 5.84072741|1.278267885e-05|7.934105832e-05|

| 5.840726937|1.773688694e-06|1.100899016e-05|

-------------------------------------------------

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ ТАТАРСТАН

АЛЬМЕТЬЕВСКИЙ НЕФТЯНОЙ ИНСТИТУТ

Кафедра информатики

Курсовая работа

На тему: метод касательных (метод Ньютона)

Работу выполнил студент гр. 52-61

Низамова Г.Н.

Проверил: Борганова Э.М.

Альметьевск 2003 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156804
рейтинг
icon
6076
работ сдано
icon
2739
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
65 048 оценок star star star star star
среднее 4.9 из 5
МГОУ
Работа выполнена очень быстро и качественно. Только положительные эмоции от сотрудничества
star star star star star
Ульяновский государственный технический университет (УлГТУ)
Не в первый раз работаю с данным исполнителем. Всегда работу выполняет заранее и очень кач...
star star star star star
Мед университет
Виктория очень внимательная, доброжелательная. Работу выполнила на отлично 👍 рекомендую да...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Проходить задания 2 курса техникума, дистант

Тест дистанционно, Разные

Срок сдачи к 28 февр.

только что

Перевести чертежи в пдф

Чертеж, МДК

Срок сдачи к 23 февр.

1 минуту назад

Бизнес модели на основе больших данных, анализ возможностей и вызовов для компаний

Курсовая, Инновационные бизнес модели глобальных компаний, менеджмент

Срок сдачи к 28 февр.

1 минуту назад

Практическое задание в Exel

Другое, Анализ данных в профессиональной сфере

Срок сдачи к 25 февр.

1 минуту назад

Объяснение решения задачи

Решение задач, Проектирование электроснабжения

Срок сдачи к 24 февр.

2 минуты назад

Помощь в разборе задач

Онлайн-репетитор, Проектирование электроснабжения

Срок сдачи к 23 февр.

3 минуты назад

написать курсовую

Курсовая, Технологическая оснастка

Срок сдачи к 20 мар.

4 минуты назад

Валидационные логистические мероприятия: объекты холодовой цепи

Магистерская диссертация, Биотехнология

Срок сдачи к 23 февр.

5 минут назад

ВКР Разработка автоматизированной системы управления вводом резерва для водного транспорта

Диплом, Тоэ, электрические машины, судовые автоматизированные электроэнергетические системы

Срок сдачи к 23 мар.

6 минут назад

Оформить ВКР по стандарту

Диплом, Управление персоналом

Срок сдачи к 22 февр.

6 минут назад

Диплом для колледжа

Диплом, Бухгалтерский учет

Срок сдачи к 20 мар.

7 минут назад

Решить 3 практических задания

Контрольная, Менеджмент

Срок сдачи к 2 мар.

7 минут назад

Регрессионный анализ (5 факторов) и экономическое обоснование для проекта по финансам (Казахстан)

Решение задач, International Trade Finance, английский язык

Срок сдачи к 23 февр.

8 минут назад
8 минут назад

Решить 5 задач

Решение задач, Тепоомассообменные процессы в защите окружающей среды, теплотехника

Срок сдачи к 25 мар.

9 минут назад

кр "экономические споры"

Контрольная, Экономика

Срок сдачи к 10 мар.

9 минут назад

Интервью и собеседование при приеме на...

Курсовая, основы профотбора

Срок сдачи к 7 апр.

10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно