Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Современные качественные исследования устойчивости

Тип Реферат
Предмет Математика
Просмотров
722
Размер файла
80 б
Поделиться

Ознакомительный фрагмент работы:

Современные качественные исследования устойчивости

И.А. Колесникова

Российский университет дружбы народов

О вариационности некоторых ДУЧП с отклоняющимися аргументами

Исследована задача существования вариационных принципов для дифференциальных уравнений с отклоняющимися аргументами вида


1. Постановка задачи. Пусть N – оператор, заданный в области D(N) линейного нормированного пространства U над полем действительных чисел R, а область значений R(N) принадлежит линейному нормированному пространству V над полем R, т.е.

В дальнейшем всюду предполагается, что в каждой точке

существует производная Гато оператора N, определяемая формулой

(1)

Решается задача существования вариационных принципов для заданных ДУЧП с отклоняющимися аргументами вида

(2)

где -ограниченная область в, с кусочногладкой границей

в предположении достаточной гладкости всех рассматриваемых функций.

Зададим область определения оператора N равенством

(3)

Здесь - заданные функции, - неизвестная функция. Числа зависят соответственно от . Если - четны, то При нечетном полагаем

Обозначим

Введем классическую билинейную форму вида где (4)


Будем говорить, что уравнение (2) допускает прямую вариационную формулировку на множестве D(N), относительно билинейной формы (4), если существует функционал FN: D(FN )=D(N)—>R такой, что

Функционал FN называется потенциалом оператора N, а N – градиентом функционала FN. Записывают N=gradфFN. Оператор N называется потенциальным на множестве D(N) относительно Ф.

Обозначая через замыкание области , будем предполагать, что - выпуклое множество, , для любых фиксированных элементов функция

Как известно [2., стр.15], необходимым и достаточным условием потенциальности оператора N на множестве D(N) относительно заданной формы является условие симметричности



Искомый функционал в этом случае имеет вид:

где F0 произвольный фиксированный элемент из R.

Для уравнения вида (2) устанавливается, что существует вариационный принцип в указанном выше смысле тогда и только тогда, когда справедлива

Теорема 1. Для потенциальности оператора (2) на множестве (3) относительно билинейной формы (4) необходимо и достаточно, чтобы выполнялись условия


Современные качественные исследования устойчивости

Доказательство теоремы может быть проведено по схеме изложенной в работе [1, стр.43].

2.Примеры.


А. Рассматривается дифференциальное уравнение с отклоняющимися аргументами вида (частный случай уравнения (2))


с граничными условиями

Для решения вопроса о вариационности задачи (7),(8) воспользуемся теоремой 1. Из условий (6) получим


Отсюда заключаем, что в случае потенциальности рассматриваемого оператора коэффициенты a-1, a 0 ,a 1 могут зависеть только от x, а b-1, b0, b1 – только от t.

С учетом условий (9), уравнение (7) может быть записано в виде


Таким образом, уравнение (7’) c граничными условиями (8) допускает вариационную формулировку.

Соответствующий функционал имеет вид


В. Рассматривается уравнение

где a,b – const, u – неизвестная функция с граничными условиями


Для оператора задачи(10),(11) условия (6) не выполняются. В этой связи рассматривается следующая задача.

Найти функцию [2] М=М(x,t,u,ui) в Ω для любого u из D(N) и соответствующий функционал F[u] так, что


Используя условия (6), находим вариационный множитель М=еu(x,t). Тогда получим, что оператор вида


является потенциальным.

Соответствующее эквивалентное уравнение будет иметь вид:


Таким образом, задача (13’), (11) допускает вариационную формулировку с функционалом

Список литературы

[1] Савчин В.М. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами.// XXXII Научная конференция факультета физико-математических и естественных наук. Тезисы докладов.1996г.С. 25.

[2] Филиппов В.М., Савчин В.М., Шорохов С.Г., Вариационные принципы для непотенциальных операторов. Итоги науки и техники. Современные проблемы математики. Новейшие достижения. Том 40.М.1992.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ДВГУПС
очень ответственно подошел к работе! Надеюсь на дальнейшее сотрудничество
star star star star star
Технический нефтегазовый институт
Спасибо Оксане, очень быстрое и качественное исполнение работы. Защита прошла на отлично. ...
star star star star star
ГУЗ
Спасибо Большое! Реферат был написан в короткие сроки и очень доступным языком
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Исследуйте на сходимость числовой знакоположительный ряд

Решение задач, Математика

Срок сдачи к 20 янв.

только что

4 задания

Контрольная, Статистика

Срок сдачи к 18 янв.

только что

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Экономика

Срок сдачи к 22 янв.

только что

Английский

Решение задач, Английский

Срок сдачи к 15 янв.

1 минуту назад

В данный момент требуется узнать стоимость

Курсовая, Бухгалтерский учет

Срок сдачи к 1 апр.

1 минуту назад

Решить 2 задачи и ответить на вопросы.

Решение задач, Электротехника

Срок сдачи к 17 янв.

2 минуты назад

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Финансы

Срок сдачи к 22 янв.

2 минуты назад

8 заданий под вариантами 7,17,27,37,47,57,67,77

Контрольная, Математика

Срок сдачи к 14 янв.

2 минуты назад

Тема в задании нужно сделать курсовую по организации пар Севастополь...

Курсовая, Бухгалтерская и налоговая отчетность

Срок сдачи к 15 янв.

2 минуты назад

Выполнить Индивидуальный проект, Обществознание

Контрольная, Обществознание

Срок сдачи к 18 янв.

4 минуты назад

Сделать 3 призентации

Презентация, SMM в спорте

Срок сдачи к 18 янв.

4 минуты назад

сравнительный анализ мер валютного контроля

Презентация, Таможенное дело

Срок сдачи к 15 янв.

4 минуты назад

Тесты,Экзамены

Другое, Все

Срок сдачи к 19 янв.

5 минут назад

Решить контрольную

Контрольная, Биология

Срок сдачи к 30 янв.

5 минут назад

Технологическая (проектно-технологическая) практика

Отчет по практике, Педагогическое образование

Срок сдачи к 16 февр.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно