Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Поверхности второго порядка

Тип Реферат
Предмет Математика
Просмотров
757
Размер файла
368 б
Поделиться

Ознакомительный фрагмент работы:

Поверхности второго порядка

Содержание.

· Понятие поверхности второго порядка.

1. Инварианты уравнения поверхности второго порядка.

· Классификация поверхностей второго порядка.

1. Классификация центральных поверхностей.

-1°. Эллипсоид.

-2°. Однополостный гиперболоид.

-3°. Двуполостный гиперболоид.
-4°. Конус второго порядка.

2. Классификация нецентральных поверхностей.

-1°. Эллиптический цилиндр, гиперболический цилиндр, эллиптический параболоид, гиперболиче­ский параболоид.

-2°. Параболический цилиндр

•Исследование формы поверхностей второго порядка по их каноническим уравнениям.

1. Эллипсоид.
2. Гиперболоиды.

- 1°. Однополостный гиперболоид.

-2°. Двуполостный гиперболоид.

3. Параболоиды.

-1°. Эллиптический параболоид.
-2°. Гиперболический пара­болоид.

4. Конус и цилиндры второго порядка.

- 1°. Конус второго порядка.
-2°. Эллиптический цилиндр.
-3°. Гиперболический цилиндр.
-4°. Параболический цилиндр.

Список использованной литературы.

§ 1. Понятие поверхности второго порядка.

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 +a33z2+2a12xy +2a23уz + 2a13xz +14x +24у+2а34z44 =0 (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13отличен от нуля.

Уравнение (1) мы будем называть общим уравнением по­верхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной де­картовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравне­ние (1) и уравнение, полученное после преобразования коор­динат, алгебраически эквивалентны.


1. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы ко­ординат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стан­дартное упрощение уравнения этой поверхности. В резуль­тате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 +a33z2 + а44 = 0 (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 а22a33, то коэффициенты a1122 ,a33 удовлетворяют условию :


Возможны следующие случаи:

-1°.Коэффициентыa1122 ,a33 одного знака, а коэффициента44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a1122 ,a33, а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют коорди­наты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a1122 ,a33противоположен знаку коэффициента а44, то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После не­сложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллип­соида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

-2°.Из четырех коэффициентов a1122 ,a33, а44 два одного зна­ка, а два других—противоположного. В этом случае поверх­ность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0,а22 >0, a33 <0,а44 <0. Тогда числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

Уравнение (4) называется каноническим уравнением однопо­лостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу иOz называются его глав­ными осями.

-. Знак одного из первых трех коэффициентов a1122 ,a33, а44противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канониче­ской форме. Пусть, ради определенности, a11 < 0,а22 <0, a33 >0,а44 <0. Тогда :

Обозначим эти числасоответственно через a2, b2, с2. Поcли несложных преобразова­ний уравнение (2) двуполостного гиперболоида можно запи­сать в следующей форме:

Уравнение (5) называется каноническим уравнением двупо­лостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим

уравнением, то оси Ох, Оу и Оz называются его главными осями.

-. Коэффициента44равен нулю. В этом случае поверхность S называетсяконусом второго порядка.

Если коэффициенты a11 ,а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 =0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 ,а22 , a33имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка за­писывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0,a33 <0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

Уравнение (6) называется каноническим уравнением веще­ственного конуса второго порядка.





2. Классификация нецентральных поверхностей второго по­рядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариантI3равен нулю. Произведем стандартное упрощение урав­нения этой поверхности. В результате уравнение поверхности примет вид

11х´2 + а´22у´2 +33z´2 +´14+´24у´+2а´34´44 =0 (7)

для системы координат Ox´y´z´

Так как инвариант I3 =0 и его значение, вы­численное для уравнения (7), равно

11 • а´22 33, то один или два из коэффициентов 11 , а´22 ,33равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.


-. Один из коэффициентов11 , а´22 ,33равен нулю. Радиопределенности будем считать, что33 =0(если равен нулю ка­кой-либо другой из указанных коэффициентов, то можно перей­ти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z'к новым координатам х, у, z по формулам

Подставляях', у' и z', найденные из (8), в левую часть (7) и заменяя затем

11наa11, а´22 на а22 , а´34 на pи а´44на q, получим следующее уравнение поверхности S в новой системе ко­ординатOxyz :

a11х2 + а22у2 + 2pz + q = 0 (9)


1)Пусть р=0, q =0. ПоверхностьSраспадается на пару пло­скостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11иа22одинаковы, и вещественными, если знаки a11 иа22различны.

2)Пустьр=0, q ≠ 0. Уравнение (9) принимает вид

a11х2 + а22у2 + q = 0 (10)

Известно, что уравнение (10) яв­ляется уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , qимеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. ци­линдр будет мнимым. Если же среди коэффициентов a11 , а22 , qимеются коэффициенты разных знаков, то цилиндр будет ве­щественным. Отметим, что в случае, когда a11 и а22имеютодинаковые знаки, a q противоположный, то величины

положительны.

Обозначая их соответственно через а2и b2, мы приведем уравнение (10) к виду

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что урав­нение гиперболического цилиндра может быть приведено к виду

3)Пусть р0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

(0, 0, ).

При этом оставим старые обозначения координатх, у, z. Очевидно, для того чтобы получить уравнение поверх­ности S в новой системе координат, достаточно заменить в урав­нении (9)

Получим следующее уравнение:

a11х2 + а22у2 + 2pz = 0 (13)

Уравнение (13) определяет так называемые параболоиды. Причем если a11 и а22имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

Уравнение (14) легко получается из (13). Если a11 и а22имеют разные знаки, то параболоид называется гиперболиче­ским. Каноническое уравнение гиперболического параболоида имеет вид

Это уравнение также легко может быть получено из (13).

-2°.Два из коэффициентов11 , а´22 ,33 равны нулю. Ради определенности будем считать, что11= 0 и а´22= 0 Перейдем отх,', у', z'к. новымкоординатам х, у, z по формулам :

Подставляя х', у' и z', найденные из (16) в левую часть (7) и заменяя затем 33 на a33 , 14 на р,24 наq и 44 на r, по­лучим следующее уравнение поверхности S в новой системе ко­ординат Охуz:

a33 z2 + 2px + 2qy + r = 0 (17)


1)Пусть р=0, q=0. Поверхность Sраспадается на пару па­раллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33иr одинаковы, и вещественными, если знакиa33 и r различ­ны, причем при r = 0 эти плоскости сливаются в одну.

2)Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг осиOz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, уи z для новых координат точек, уравнение (17) примет вид

a33 z2 + 2q´y = 0 (19)

которое является уравнением параболического цилиндра с обра­зующими, параллельными новой оси Ох.

§ 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям

1. Эллипсоид.

Из уравнения (3) вытекает, что координатные плоскости яв­ляются плоскостями симметрии эллипсоида, а начало коорди­нат—центром симметрии. Числа а, b, сназываются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе формуэллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

Ради определенности рассмотрим линииLh пересечения эл­липсоида с плоскостями

z = h(20)

параллельными плоскости Оху. Уравнение проекцииL*hли­нииLhна плоскость Охуполучается из уравнения (3), если положить в немz = h. Таким образом, уравнение этой проекции имеет вид


Если положить

то уравнение (21) можно записать в виде


т. е.L*hпредставляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lh получается «подъемом»L*h на высоту h по оси Оz(см. (20)), то и Lhпредставляет собой эллипс.

Представление об эллипсоиде можно получить следующим об­разом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят отh (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на ка­кую высоту по оси Оz должен быть «поднят» этот эллипс. Мыполучим своего рода «карту» эллипсоида. Используя эту «кар­ту», легко представить себе пространственный вид эллипсоида.

(Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)

Наглядное изображение эллипсоида находится на следующей странице.

Эллипсоид
.

2. Гиперболоиды.

-. Однополостный гиперболоид. Обратимся к каноническому

уравнению (4) однополостного гиперболоида

Из уравнения (4) вытекает, что координатные плоскости яв­ляются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.


-. Двуполостный гиперболоид.Из канонического уравнения (5)двуполостного гиперболоида вытекает, что координатные пло­скости являются его плоскостями симметрии, а начало коорди­нат — его центром симметрии.


3. Параболоиды.

-1°.Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

мы видим, что для негоOxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.


-2°.Гиперболический пара­болоид. Из канонического уравнения (15)




гиперболического параболои­да вытекает, что плоскости Oxz и Оуz являются плоско­стями симметрии. ОсьOz называется осью гиперболического пaраболоида.

Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.

Линииz=h пересечения гиперболического параболоида плоскостямиz=h представляют собой при h>0 гиперболы

с полуосями


а приh < 0 —сопряженные гиперболы для гипербол (24)


с полуосями


Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :

Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).
Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллип­тического параболоида, можно убедиться в том, что гиперболи­ческий параболоид может быть получен путем параллельного перемещения параболы, предста­вляющей собой сечение плоско­стьюOxz (Оуz), когда ее вер­шина движется вдоль параболы, являющейся сечением параболо­ида плоскостьюOyz (Oxz).

Прим.:Изображение гиперболического пaраболоида дано на следующей странице.


Гиперболический пара­болоид.













4. Конус и цилиндры второго порядка.

-1°.Конус второго порядка


Убедимся, что вещественный конус S образован прямыми ли­ниями, проходящими через начало О координат. Естественно на­зывать точку О вершиной конуса.

Для доказательства сформулированного утверждения, очевид­но, достаточно установить, что прямая L, соединяющая произвольную, отличную от начала координат точку
М00, у0, z0) ко­нуса (6) и начало координат О , целиком распола­гается на конусе, т. е. координаты (х, у, z) любой точки М прямойL удовлетворяют уравнению (6).

Так как точка М00, у0, z0) лежит на конусе (6), то :


Координаты (х, у, z) любой точки М прямой L равны соответ­ственноtx0, ty0 , tz0, гдеtнекоторое число. Подставляя эти значения для х, у иz в левую часть (6), вынося затем t2 за скоб­ку и учитывая (29), мы убедимся в том, что М лежит на ко­нусе. Таким образом, утверждение доказано. Представление о форме конуса может быть получено методом сечений. Легко убедиться, что сечения конуса плоскостями z = h представляютсобой эллипсы с полуосями :

-. Эллиптическийцилиндр.


Состоит из прямых линий, параллельных оси Oz.

-. Гиперболическийцилиндр.





Состоит из прямых линий, параллельных оси Oz.







-. Параболическийцилиндр.

a33 z2 + 2q´y = 0 (19)
Путем переименования осей координат и простых арифметических операций из уравнения, (19) мы получим новое, компактное уравнение параболическогоцилиндра.




Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно