Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод конечных разностей или метод сеток

Тип Реферат
Предмет Математика
Просмотров
1258
Размер файла
37 б
Поделиться

Ознакомительный фрагмент работы:

Метод конечных разностей или метод сеток

ВВЕДЕНИЕ

Значительнаое число задач физики и техники приводят к дифференциальным уравнениям в частных прозводных (уравнения математической физики). Установившиеся процессы различной физической природы описываются уравнениями эллиптического типа.

Точные решения краевых задач для эллиптических уравнений удаётся получить лишь в частных случаях. Поэтому эти задачи решают в основном приближённо. Одним из наиболее универсальных и эффективных методов, получивших в настоящее время широкое распространение для приближённого решения уравнений математической физики, является метод конечных разностей или метод сеток.

Суть метода состоит в следующем. Область непрерывного изменения аргументов, заменяется дискретным множеством точек (узлов), которое называется сеткой или решёткой. Вместо функции непрерывного аргумента рассматриваются функции дискретного аргумента, определённые в узлах сетки и называемые сеточными функциями. Производные, входящие в дифференциальное уравнение и граничные условия, заменяются разностными производными, при этом краевая задача для дифференциального уравнения заменяется системой линейных или нелинейных алгебраических уравнений (сеточных или разностных уравнений). Такие системы часто называют разностными схемами. И эти схемы решаются относительно неизвестной сеточной функции.

Далее мы будем рассматривать применение итерационного метода Зейделя для вычисления неизвестной сеточной функции в краевой задаче с неоднородным бигармоническим уравнением.

ПОСТАНОВКА ЗАДАЧИ

Пусть у нас есть бигармоническое уравнение :

2

U=f

Заданное на области G={(x,y): 0<=x<=a, 0<=y<=b}. Пусть также заданы краевые условия на границе области G .

U = 0 Y

x=0 b

Uxxx = 0

x=0

G

Ux = 0

x=a

Uxxx = 0 0 a X

x=a

U = 0 U = 0

y=0 y=b

Uy = 0 Uxx + Uyy = 0

y=0 y=b y=b

Надо решить эту задачу численно.

Для решения будем использовать итерационный метод Зейделя для решения сеточных задач.

По нашей области G построим равномерные сетки Wx и Wy с шагами hx и hyсоответственно .

Wx={x(i)=ihx,i=0,1...N,hxN=a}

Wy={y(j)=jhy,j=0,1...M, hyM=b}

Множество узлов Uij=(x(i),y(j)) имеющих координаты на плоскости х(i),y(j) называется сеткой в прямоугольнике G и обозначается :


W={Uij=(ihx,jhy),i=0,1...N,j=0,1...M,hxN=a, hyM=b}


Сетка W очевидно состоит из точек пересечения прямых x=x(i) и y=y(j).

Пусть задана сетка W.Множество всех сеточных функций заданных на W образует векторное пространство с определённом на нём сложениемфункций и умножением функции на число. На пространстве сеточных функций можно определитьразностные или сеточные операторы. 0ператор Aпреобразующий сеточную функцию U в сеточную функцию f=AUназывается разностным или сеточным оператором. Множество узлов сетки используемое при написании разностного оператора в узле сетки называется шаблоном этого оператора.

Простейшим разностным оператором является оператор дифференцирования сеточной функции, который порождает разностные производные. Пусть W - сетка с шагом h введённая на Rт.е.

W={Xi=a+ih, i=0, + 1, + 2...}

Тогда разностные производные первого порядка для сеточной функции Yi=Y(Xi) , Xiиз W, определяется по формулам :

L1Yi = Yi - Yi-1 , L2Yi=L1Yi+1

h

и называются соответственно левой и правой производной. Используется так же центральная производная :

L3Yi=Yi+1 - Yi-1 = (L1+L2)Yi

2h 2

Разностные операторы A1, A2, A3имеют шаблоны состоящие 2х точек и используются при апроксимации первой производной Lu=u’ . Разностные производные n-ого порядка определяются как сеточные функции получаемые путём вычисления первой разностной производной от функции, являющейся разностной производной n-1 порядка, например :

Yxxi=Yxi+1 - Yxi= Yi-1-2Yi+Yi+1

2

h h

Yxxi= Yxi+1-Yxi-1= Yi-2 - 2Yi+Yi+ 2

2

2h 4h

которые используются при апроксимации второй производной. Соответствующие разностные операторы имеют 3х точечный шаблон.

Анологично не представляет труда определить разностные производные от сеточных функций нескольких переменных.

Аппроксомируем нашу задачу с помощью разностных производных. И применим к получившейся сеточной задаче метод Зейделя.

МЕТОД ЗЕЙДЕЛЯ

Одним из способов решения сеточных уравнений является итерационный метод Зейделя.

Пусть нам дана система линейных уравнений :

AU = f

или в развёрнутом виде :

M

aijUj = fi , i=1,2...M

i=1

Итерационный метод Зейделя в предположении что диагональные элементы матрицы А=(aij)отличны от нуля (aii<>0)записывается в следующем виде :

i (k+1)M(k)

aijYj + aijYj = fi , i=1,2...M

j=1 j=i+1

(k)

где Yj - jая компонента итерационного приближения номера k. В качестве начального приближения выбирается произвольный вектор.

Определение (k+1)-ой итерации начинается с i=1

(k+1) M (k)

a11Y1 = - a1jYj +f1

j=2

(k+1)

Так как a11<>0то отсюда найдём Y1. И для i=2получим :

(k+1)(k+1) M (k)

a22Y2 = - a21Y1 - a2jYj + f2

j=3

(k+1) (k+1) (k+1) (k+1)

Пусть уже найдены Y1 , Y2 ... Yi-1. Тогда Yi находится из уравнения :

(k+1) i-1 (k+1) M (k)

aiiYi = - aijYj - aijYj + fi (*)

j=1 j=i+1

Из формулы (*) видно , что алгоритм метода Зейделя черезвычайно прост. Найденное по формуле (*) значение Yiразмещается на месте Yi.

Оценим число арифметических действий, которое требуется для реализации одного итерационного шага. Если все aij не равны нулю, то вычисления по формуле (*) требуютM-1операций умножения и одного деления. Поэтому реализация

2

одного шага осуществляется за 2M - M арифметических действий.

Если отлично от нуля лишь m элементов, а именно эта ситуация имеет место для сеточных эллиптических уравнений, то на реализацию итерационного шага потребуется 2Mm-Mдействий т.е. число действий пропорционально числу неизвестных M.

Запишем теперь метод Зейделя в матричной форме. Для этого представим матрицу A в виде суммы диагональной, нижней треугольной и верхней треугольной матриц :

A = D + L + U

где


0 0 . . . 0 0 a12a13 . . . a1M

a21 0 0 0 a23 . . . a2M

a31a32 0 0 .

L = . U= .

. .

. aM-1M

aM1aM2 . . . aMM-1 0 0 0

И матрица D- диагональная.

(k) (k) (k)

Обозначим через Yk = ( Y1 ,Y2 ... YM )вектор k-ого итерационного шага. Пользуясь этими обозначениями запишем метод Зейделя иначе :

( D + L )Yk+1 + UYk = f , k=0,1...

Приведём эту итерационную схему к каноническому виду двухслойных схем :

( D + L )(Yk+1 - Yk) +AYk = f , k=0,1...

Мы рассмотрели так называемый точечный или скалярный метод Зейделя, анологично строится блочный или векторный метод Зейделя для случая когда aii - есть квадратные матрицы, вообще говоря, различной размерности, а aijдля i<>j - прямоугольные матрицы. В этом случае Yi и fiесть векторы, размерность которых соответствует размерности матрицы aii.

ПОСТРОЕНИЕ РАЗНОСТНЫХ СХЕМ

Пусть Yi=Y(i)сеточная функция дискретного аргумента i. Значения сеточной функции Y(i) в свою очередь образуют дискретное множество. На этом множестве можно определять сеточную функцию, приравнивая которую к нулю получаем уравнение относительно сеточной функции Y(i) - сеточное уравнение. Специальным случаем сеточного уравнения является разностное уравнение.

Сеточное уравнение получается при аппроксимации на сетке интегральных и дифференциальных уравнений.

Так дифференциальное уравнение первого порядка :

dU = f(x) , x > 0

dx

можно заменить разностным уравнением первого порядка :

Yi+1 - Yi = f(xi) , xi = ih, i=0,1...

h

илиYi+1=Yi+hf(x), где h - шаг сетки v={xi=ih, i=0,1,2...}. Искомой функцией является сеточная функция Yi=Y(i).

При разностной аппроксимации уравнения второго поряда

2

d U = f(x)

2

dx

получим разностное уравнение второго порядка :

2

Yi+1 - 2Yi + Yi+1 = yi , где yi=hfi

fi = f(xi)

xi = ih

Для разностной aппроксимациипроизводных U’,U’’,U’’’можно пользоваться шаблонами с большим числом узлов. Это приводит к разностным уравнениям более высокого порядка.

Анологично определяется разностное уравнение относительно сеточной функции Uij = U(i,j) двух дискретных аргументов. Например пятиточечная разностная схема “крест” для уравнения Пуассона

Uxx + Uyy = f(x,y)

на сетке Wвыглядит следующим образом :

Ui-1j-2Uij+Ui+1j+Uij-1-2Uij+Uij+1 =fij

2 2

hx hy

где hx - шаг сетки по X

hy - шаг сетки поY

Сеточное уравнение общего вида можно записать так:

N

CijUj = fi i=0,1...N

j=0

Оно содержит все значения U0, U1 ... UNсеточной функции. Его можно трактовать как рзностное уравнение порядка Nравного числу узлов сетки минус единица.

В общем случае под i - можно понимать не только индекс , но и мультииндекс т.е. вектор i = (i1 ... ip)с целочисленными компонентами и тогда :

СijUj =fi iÎW

jÎW

где сумирование происходит по всем узлам сетки W. Если коэффициенты Сijне зависят от i, тоуравнение называют уравнением с постоянными коэффициентами.

Аппроксимируем нашу задачу т.е. заменим уравнение и краевые условия на соответствующие им сеточные уравнения.

U=U(x,y)

y

M b

M-1

Uij j

j

1

0 1 2 i N-1 N=a x

i

Построим на области G сетку W . И зададим на W сеточную функцию Uij=U(xi,yj) ,

где

xi=x0+ihx

yi=y0+jhy

hx = a/N ,

hy = b/Mи т.к.

x0=y0

то

xi=ihx, yi=jhy, i=0...N

j=0...M

Найдём разностные производные входящие в уравнение

2

DU = f

(т.е построим разностный аналог бигармонического уравнения).

Uxij = Ui+1j - Uij , Uxi-1j = Uij - Ui-1j

hx hx

Uxxij = Ui-1j - 2Uij + Ui+1j

hx

Рассмотрим Uxxxxijкак разность третьих производных :

Uxxi-1j - Uxxij- Uxxij - Uxxi+1j

Uxxxxij = hx hx = Ui-2j - 4Ui-1j + 6Uij - 4Ui+1j + Ui+2j

4

hx hx

Анологично вычислим производную по y :

Uyyyyij = Uij-2 - 4Uij-1 + 6Uij - 4Uij+1 +Uij+2

4

hy

Вычислим смешанную разностную производнуюUxxyy :

Uxxij-1 - Uxxij - Uxxij - Uxxij+1

(Uxx)yyij = hy hy = Uxxij-1 - 2Uxxij +Uxxij+1 =

2

hy hy

= Ui-1j-1 - 2Uij-1 + Ui+1j-1 - 2Ui-1j - 2Uij + Ui+1j + Ui-1j-1 - 2Uij+1 + Ui+1j+1

2 2 2 2 2 2

hxhy hxhy hxhy

В силу того чтоDU = f

имеем:

Ui-2j - 4Ui-1j + 6Uij - 4Ui+1j +Ui+2j +

4

hx

+ 2Ui-1j-1 - 2Uij-1 + Ui+1j-1 - 4Ui-1j - 2Uij +Ui+1j + 2 Ui-1j+1 -2Uij+1 + Ui+1j+1 +

2 2 2 2 2 2

hxhy hxhy hxhy

+ Uij-2 - 4Uij-1 + 6Uij - 4Uij+1 + Uij+2 = fij (*)

4

hy

Это уравнение имеет место для

i=1,2, ... N-1

j=1,2, ... M-1

Рассмотрим краевые условия задачи. Очевидно следующее :

x=0 ~ i=0

x=a ~ xN=a

y=0 ~ Yo=0

y=b ~ YM=b


1)х=0 (левая граница областиG)

Заменим условия

U = 0

x=o

Uxxx = 0

x=o

на соответствующие им разностные условия

Uoj=0

U-1j=U2j - 3U1j (1`)

2) х=а(правая граница областиG)

i=N

Ux = 0

x=a

Uxxx = 0

x=aиз того что Ui+1j - Ui-1j = 0

2hx

UN+1j = UN-1j

UNj = 4 UN-1j - UN-2j (2`)

3

3)у=0 (нижняя граница области G)

j=0

Ui ,-1 = Ui1

Ui0 = 0 (3`)

это есть разностный аналогUy = 0

y=o

U =0

y=o

4)у=b

i=M

U = 0

y=bт.е.UiM=0(**)

Распишем через разностные производныеUxx + Uyy =0и учитывая чтоj=Mи (**) получим

UiM-1 = UiM+1

Итак краевые условия на у=b имеют вид

UiM+1 = UiM-1

UiM = 0 (4`)

Итого наша задача в разностных производных состоит из уравнения (*) заданного на сетке Wи краевых условий (1`)-(4`) заданных на границе области G (или на границе сетки W)

ПРИМЕНЕНИЕ МЕТОДА ЗЕЙДЕЛЯ

Рассмотрим применение метода Зейделя для нахождения приближенного решения нашей разностной задачи (*),(1`) - (4`).

В данном случае неизвестными являются

Uij = U(xi,yj)

где xi = ihx

yj = jhy

при чём hx = a/N ,

hy = b/M

это есть шаг сетки по x и по у соответственно , а N и М соответственно количество точек разбиения отрезков [0, а] и [0,b]

Пользуясь результатами предыдущего раздела запишем уравнение

2

DU = f

как разностное уравнение. И упорядочим неизвестные естественным образом по строкам сетки W , начиная с нижней строки.


1 Ui-2j - 4 + 4 Ui-1j + 6 - 8 + 6 Uij - 4 + 4 Ui+1j + 1 Ui+2j + 2Ui-1j-1 -

44 2 24 2 2 4 4 2 2 4 2 2

hx hx hxhy hx hxhy hy hx hxhy hx hxhy


- 4 + 4 Uij-1 + 2 Ui+1j-1 + 2 Ui-1j+1 - 4 + 4 Uij+1 + 2 Ui+1j+1 + 1 Uij-2 +

2 2 4 2 2 2 2 2 2 4 2 2 4

hxhy hy hxhy hxhy hxhy hy hxhy hy

+ 1 Uij+2 = f ijдля i=1 ... N-1, j=1 ... M-1

4

hy

и Uудовлетворяет краевым условиям (1`) - (4`), так как в каждом уравнении связаны вместе не более 13 неизвестных то в матрице А отличны от нуля не более 13-элементов в строке. В соответствии со вторым разделом перепишем уравнение:

(k+1) (k+1) (k+1) (k+1)

6 - 8 + 6 Uij = - 1 Uij-2 - 2 Ui-1j-1 + 4 + 4 Uij-1 -

4 2 2 4 4 2 2 2 2 4

hx hxhy hy hy hxhy hxhy hy

(k+1) (k+1) (k+1) (k)

- 2 Ui+1j-1 - 1 Ui-1j + 4 + 4 Ui-1j + 4 + 4 Ui+1j -

2 244 2 2 4 2 2

hxhy hx hx hxhy hx hxhy


(k) (k) (k) (k) (k)

- 1 Ui+2j - 2 Ui-1j+1 + 4 + 4 Uij+1 - 2 Ui+1j+1 - 1 Uij+2 + fij

4 2 2 2 2 4 2 2 4

hx hxhy hxhy hy hxhy hy

(k)

При чем U удовлетворяет краевым условиям (1`) - (4`). Вычисления начинаются с i=1, j=1и продолжаются либо по строкам либо по столбцам сетки W. Число неизвестных в задаче n = (N-1)(M-1).

Как видно из вышеизложенных рассуждений шаблон в этой задаче тринадцатиточечный т.е. на каждом шаге в разностном уравнении участвуют 13 точек (узлов сетки) Рассмотрим вид матрицы А-для данной задачи.

j+2
j+1
j
j-1

Матрица метода получается следующим образом : все узлы сетки перенумеровываются и размещаются в матрице Так что все узлы попадают на одну строку и поэтому матрица метода для нашей задачи будет тринадцатидиагональной .

j-2
i-1
i
i+1
i+2
i-2
Шаблон задачи

ОПИСАНИЕ ПРОГРАММЫ.

Константы используемые в программе :

aq = 1- правая граница области G

b = 1 - левая граница области G

N = 8 - колличество точек разбиения отрезка[0,a]

M = 8 - колличество точек разбиения отрезка [0,b]

h1 = aq/N - шаг сетки по X

h2 = b/M - шаг сетки по Y

Переменные :

u0 - значения сеточной функции U на k-ом шаге

u1 - значения сеточной функции Uна (k+1)-ом шаге

a - массив коэффициентов шаблона

Описание процедур :

procedure Prt(u:masa) - печать результата

function ff(x1,x2: real):real - возвращает значение функцииf в узле (x1,x2)

procedure Koef - задаёт значения коэффициентов

Действие :

Берётся начальое приближение u0 и с учётом краевых условий ведётся вычисление с i=2 ... N , j=2 ... M. На каждом итерационном шаге получаем u1 по u0. По достижении заданной точности eps>0вычисления прекращаются. И все элементы матрицы A, которые лежат ниже главной диагонали получают итерационный шаг (k+1) , а те элементы которые лежат выше главной диагонали (исключая главную диагональ) получают итерационный шаг k.

Примечание : программа реализована на языке Borland Pascal 7.0

Министерство общего и профессионального образования РФ

Воронежский государственный университет

факультет ПММ

кафедра Дифференциальных уравнении

Курсовой проект

“Решение бигармонического уравнения методом Зейделя”

Исполнитель : студент 4 курса 5 группы

Никулин Л.А.

Руководитель : старший преподаватель

Рыжков А.В.

Воронеж 1997г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно