Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Системы линейных алгебраических уравнений

Тип Реферат
Предмет Математика
Просмотров
875
Размер файла
310 б
Поделиться

Ознакомительный фрагмент работы:

Системы линейных алгебраических уравнений

Высшая математика

Контрольная работа №1

Вариант 3

Задание №1

Дана система линейных алгебраических уравнений:

Требуется:

1) Записать матрицу коэффициентов (А) и свободных членов ();

2) Решить систему методом Гаусса и (в случае её невырожденности) Крамера.

Решение.

1) Запишем матрицу коэффициентов:

Матрица свободных членов:

2) Решим систему методом Гаусса.

Запишем расширенную матрицу системы и преобразуем её методом Гаусса (приведём к ступенчатому виду с помощью элементарных преобразований строк):


Шаг 1: из строки 2 вычитаем строку 1, умноженную на 2; из строки 3 вычитаем строку 1;

Шаг 2: из строки 3 вычитаем строку 2;

Получили вырожденную систему уравнений, так как если записать уравнение по последней строке преобразованной матрицы, получим 0 = -1, что неверно. Значит, заданная система не имеет решений.

Ответ: решения системы не существует.

Задание №2

Решить матричное уравнение:

АXBт + m AB = С

, и , m=2.

Решение.

Для того, чтобы решить заданное матричное уравнение, перенесём все известные слагаемые в правую часть, а неизвестные оставим в левой:

Затем обе части уравнения домножим справа на матрицу, обратную к транспонированной матрице В, и домножим слева на матрицу, обратную к матрице А, получим:

где Е – единичная матрица.

Для того, чтобы найти Х, найдём все необходимые матрицы, затем перемножим их.


(*)

Запишем транспонированную матрицу Bт, для чего на место столбцов запишем соответствующие строки:

Вычислим произведение матриц А и В, затем умножим полученную матрицу на m=2:

Вычтем полученную матрицу из матрицы С:

Теперь найдём матрицы .


Подставляем все найденные матрицы в уравнение (*)

Ответ:.

Задание №3

Даны векторы:

, и .

Требуется:

1) – найти длину вектора ;

2) - вычислить скалярное произведение ;

3) – найти координаты вектора ;

4) – установить, является ли система векторов ,, линейно зависимой.

Решение.

1) Длина (модуль) вектора находится по формуле:

Значит, длина вектора равна:

2) Скалярное произведение векторов и ищется следующим образом:

Подставляем координаты векторов и .

3) Сложение и вычитание векторов заключается в поэлементном соответственно сложении или вычитании их координат. Чтобы умножить вектор на число, необходимо умножить каждую координату вектора на это число. Поэтому:


Для того, чтобы определить, является ли система из трёх векторов, линейно независимой, достаточно вычислить определитель третьего порядка, составленный из координат этих векторов. Если определитель окажется равным 0, значит, система векторов линейно зависима; если определитель будет отличен от 0 – система векторов линейно независима. Координаты векторов будут строками определителя. Вычислим определитель, разложив его по первому столбцу.

Так как определитель не равен 0, значит, система векторов линейно независима.

Ответ: 1); 2); 3); 4) система векторов линейно независима.

Задание №4

Даны координаты точек:

Требуется:

1) найти общее уравнение прямой , проходящей через точки А1 и А2;

2) найти уравнение прямой , проходящей через точку параллельно прямой ;

3) найти расстояние между прямыми и ;

4) написать уравнение прямой, проходящей через точку перпендикулярно прямой и найти координаты точки пересечения этих прямых;

5) построить схематический чертеж.

Решение.

1) Сначала запишем уравнение прямой, проходящей через две точки М1(x1,y1)и М2(x2,y2):

Подставляем координаты точек А1 и А2 и получаем:

Преобразуем полученное уравнение и получим общее уравнение прямой :

2) Запишем уравнение прямой в виде :

Если прямые параллельны, то они имеют одинаковый коэффициент k. Значит прямая имеет вид . Так как она проходит через точку , значит можем подставить координаты этой точки и найти b:


Уравнение прямой: или

3) Если две параллельные прямые заданы общими уравнениями и , то расстояние между ними можно вычислить по формуле:

Подставляя коэффициенты из уравнений прямых и , получаем:

4) Уравнение прямой, проходящей через точку М1(x1,y1) и перпендикулярной к прямой , представляется уравнением:

Подставим координаты точки и коэффициенты уравнения прямой:

Координаты точки пересечения прямых и найдём, решив систему уравнений:


Координаты точки пересечения прямых D(0,5; 5,5).

5) На рисунке изобразим все необходимые прямые и точки:

Ответ: 1) ; 2) ; 3) ; 4) ; D(0,5; 5,5)..


Задание №5

Построить на плоскости область решений и определить координаты угловых точек области решений системы неравенств:

Решение.

Построим прямые:

На рисунке изображены прямые и выделена интересующая нас область решений S.


Угловыми точками этой области являются точки А, В, С и D. Найдём их координаты, как координаты точек пересечения соответствующих двух прямых:

Итак, координаты угловых точек области решений неравенств:

Ответ: .

Задание №6

Не применяя правило Лопиталя, вычислить следующие пределы

1. , если: а) , б) , в) .

2.

Решение.

1) а)


б)

в)

2)

Введём замену , тогда . Затем домножим числитель и знаменатель на выражение, сопряжённое числителю:

Ответ: 1) а) 2; б) 0; в) 6; 2) 2.

Задание №7

Задана функция спроса от цены товара . Найти эластичность спроса по цене при цене , и дать экономическую интерпретацию.

Решение.

Эластичность функции y относительно переменной х вычисляется по формуле


Вычислим производную функции q по p и подставим наши значения в формулу:

Подставим значение , тогда получим:

Полученное значение эластичности спроса по цене показывает, что если цена увеличится на 1%, то спрос снизится на %.

Ответ:.

Задание №8

Исследовать функцию и построить ее график:

Решение.

1) Область определения функции

2) Функция не является периодической.

Функция является нечётной, так как

3) Так как функция нечётна, значит точка пересечения с осью Оу – это начало координат, т.е. точка (0; 0).

Точки пересечения с осью Ох: ,т.е. только точка (0; 0).

4) y(x) непрерывна на всей области определения D(x), значит точек разрыва нет, вертикальных асимптот нет.

Так как пределы бесконечны, значит, горизонтальных асимптот нет.

Найдём наклонные асимптоты вида , если они есть:


Прямая будет наклонной асимптотой.

5) Найдём экстремумы функции и интервалы возрастания и убывания. Для этого найдём точки, в которых первая производная обращается в 0:

Т.е. критической является точка .

Но в точке x=0, производная не меняет знак, поэтому эта точка не является точкой экстремума.

На всей области определения функции y(x) производная , следовательно, функция возрастает.

6) Найдём интервалы выпуклости и вогнутости кривой, а также точки её перегиба. Для этого найдём точки, в которой вторая производная меняет знак.

Значит, функция имеет три точки перегиба: .

На каждом из промежутков и вторая производная , следовательно, функция вогнута. На каждом из промежутков и вторая производная , следовательно, функция выпукла.

7) Построим график функции

Задание №9

Найти градиент функции в указанной точке:

, М (1,1);


Решение.

Градиент функции в точке находится по формуле:

Вычислим частные производные заданной функции Zи их значения в точке :

Подставим значения частных производных в точке в формулу для вычисления градиента в точке, получим:

Ответ: .


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156804
рейтинг
icon
6076
работ сдано
icon
2739
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
65 048 оценок star star star star star
среднее 4.9 из 5
МГОУ
Работа выполнена очень быстро и качественно. Только положительные эмоции от сотрудничества
star star star star star
Ульяновский государственный технический университет (УлГТУ)
Не в первый раз работаю с данным исполнителем. Всегда работу выполняет заранее и очень кач...
star star star star star
Мед университет
Виктория очень внимательная, доброжелательная. Работу выполнила на отлично 👍 рекомендую да...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Проходить задания 2 курса техникума, дистант

Тест дистанционно, Разные

Срок сдачи к 28 февр.

только что

Перевести чертежи в пдф

Чертеж, МДК

Срок сдачи к 23 февр.

1 минуту назад

Бизнес модели на основе больших данных, анализ возможностей и вызовов для компаний

Курсовая, Инновационные бизнес модели глобальных компаний, менеджмент

Срок сдачи к 28 февр.

1 минуту назад

Практическое задание в Exel

Другое, Анализ данных в профессиональной сфере

Срок сдачи к 25 февр.

1 минуту назад

Объяснение решения задачи

Решение задач, Проектирование электроснабжения

Срок сдачи к 24 февр.

2 минуты назад

Помощь в разборе задач

Онлайн-репетитор, Проектирование электроснабжения

Срок сдачи к 23 февр.

3 минуты назад

написать курсовую

Курсовая, Технологическая оснастка

Срок сдачи к 20 мар.

4 минуты назад

Валидационные логистические мероприятия: объекты холодовой цепи

Магистерская диссертация, Биотехнология

Срок сдачи к 23 февр.

5 минут назад

ВКР Разработка автоматизированной системы управления вводом резерва для водного транспорта

Диплом, Тоэ, электрические машины, судовые автоматизированные электроэнергетические системы

Срок сдачи к 23 мар.

6 минут назад

Оформить ВКР по стандарту

Диплом, Управление персоналом

Срок сдачи к 22 февр.

6 минут назад

Диплом для колледжа

Диплом, Бухгалтерский учет

Срок сдачи к 20 мар.

7 минут назад

Решить 3 практических задания

Контрольная, Менеджмент

Срок сдачи к 2 мар.

7 минут назад

Регрессионный анализ (5 факторов) и экономическое обоснование для проекта по финансам (Казахстан)

Решение задач, International Trade Finance, английский язык

Срок сдачи к 23 февр.

8 минут назад
8 минут назад

Решить 5 задач

Решение задач, Тепоомассообменные процессы в защите окружающей среды, теплотехника

Срок сдачи к 25 мар.

9 минут назад

кр "экономические споры"

Контрольная, Экономика

Срок сдачи к 10 мар.

9 минут назад

Интервью и собеседование при приеме на...

Курсовая, основы профотбора

Срок сдачи к 7 апр.

10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно