Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теорема Бернулли Закон распределения Пуассона Критерий Колмогорова

Тип Реферат
Предмет Математика
Просмотров
1535
Размер файла
100 б
Поделиться

Ознакомительный фрагмент работы:

Теорема Бернулли Закон распределения Пуассона Критерий Колмогорова

Московский Государственный Авиационный

Институт

(Технический Университет)

Филиал „Взлёт“

Курсовая работа

«Теорема Бернулли. Закон распределения Пуассона. Критерий Колмогорова»

Задание 1. Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи

Теорема утверждает, что при большом числе опытов частота события приближается (точнее - сходится по вероятности) к вероятности этого события. Она устанавливает факт сходимости по вероятности тех или иных случайных величин к постоянным, не случайным величинам.

Краткая теория:

Теорема Я. Бернулли: при увеличении количества опытов, частота появлений событий сходится по вероятности к вероятности этого события.

где , - сколь угодно малые положительные числа.

Вероятность того, что в n независимых испытаний, в которых вероятность появления события равна р(0<р<1), событие наступит ровно к раз(безразлично, в какой последовательности), равна

, или

где q=1-p

Вероятность того, что в n испытаниях событие наступит:

a) менее к раз;

b) более к раз;

c) не менее к раз;

d) не более к раз; - находятся по формулам:

a) ;

b) ;

c) ;

d) .

Теорема Я. Бернулли утверждает устойчивость частоты при постоянных условиях опыта. Но при изменяющихся условиях опыта аналогичная устойчивость также существует. Теорема, устанавливающая свойство устойчивости частот при переменных условиях опыта, называется теоремой Пуассона.

Схема цепи:


Вычисление вероятности:

Пусть вероятности безотказной работы элементов выглядят следующим образом:

P1 = 0.5

P2 = 0.45

P3 = 0.6

P4 = 0.9

P5 = 0.39

P6 = 0.42

P7 = 0.6

Текст программы:

Program Shiva;

Uses CRT;

Label Start;

Const

k = 7; n = 100000;

Top = 60; Left = 55; Width = 360; Height = 380;

Type Real = Extended;

Var

GrDriver, GrMode : Integer;

R : Array[1..k] Of Record P : Real; Works : Boolean; End;

Fr : Real; j : Byte;

m, i, w : LongInt; Gone : Boolean;

Function Calc : Real;

Var P1, P2, P3, P4 : Real;

Begin

Calc := (R[1].P +R[2].P-R[1].P*R[2].P+R[3].P-R[3].P*

(R[1].P+R[2].P-R[1].P*R[2].P))*R[4].P*

(R[5].P +R[6].P-R[5].P*R[6].P+R[7].P-R[7].P*

(R[5].P+R[6].P-R[5].P*R[6].P));

End;

Procedure Init_Condit;

Var i : Byte;

Begin

For i := 1 To k Do Begin

R[i].Works := False;

If Random <= R[i].P Then R[i].Works := True;

End;

Gone := (R[1].Works Or R[2].Works Or R[3].Works)

And R[4].Works And (R[5].Works Or R[6].Works Or R[7].Works);

End;

Begin

ClrScr; Randomize;

R[1].P := 0.5; R[2].P := 0.45; R[3].P := 0.6; R[4].P := 0.9;

R[5].P := 0.39; R[6].P := 0.42; R[7].P := 0.6;

WriteLn; WriteLn(' Расчетнаявероятность: ', Calc:0:3); WriteLn;

WriteLn(' n p*'); WriteLn; m := 0; w := 0;

For j := 1 To 18 Do Begin

For i := 1 To 1000 Do Begin

Inc(w);

Init_Condit;

If Gone Then Inc(m);

End; Fr := m / w;

WriteLn(w : 10, Fr:15:3);

End;

Repeat Until KeyPressed;

End.

Результаты программы:

Расчетная вероятность: 0.688

N,числоопытов

p*,частота

10000.675
20000.678
30000.676
40000.680
50000.681
60000.682
70000.684
80000.683
90000.683
100000.684
110000.685
120000.685
130000.685
140000.686
150000.687
160000.687
170000.687
180000.688

Проверка в ручную:

Первый способ:

Вывод: при большом числе опытов частота события приближается (точнее - сходится по вероятности) к вероятности этого события. Следовательно, можно сделать вывод, что теорема Бернулли верна.

Задание 2,3. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы о том, что полученная случайная величина имеет данный закон распределения с помощью критерия Колмогорова.

Закон Пуассона

Рассмотрим случайную величину X, которая может принимать целые, неотрицательные значения:0,1,2,... ,m,...

Говорят, что эта СВ X распределена по закону Пуассона, если вероятность того, что она примет определенное значение т, выражается формулой:

(m=0,1,2...), а - некоторая положительная величина называемая параметром закона Пуассона. Ряд распределения СВ X, распределенный по закону Пуассона, имеетвид:

012m
(a/1!)2/2!)(am/m!)

Это распределение зависит от одного параметра а, на рисунке 1 показан вид распределения Пуассона при различных а.

Математическое ожидание данного распределения случайной величины равно параметру закона Пуассона а: ; Дисперсия также равна этому параметру: Dx=a. Таким образом дисперсия случайной величины, распределенной по закону Пуассона равна ее математическому ожиданию и равна параметру а.

Это свойство применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина X, распределена по закону Пуассона, для этого определяют из опыта статистические характеристики: математическое ожидание и дисперсию. Если их значения близки, то гипотеза является правдоподобной.

Дискетной называется случайная величина возможные значения которой есть отдельные изолированные числа(т.е. между двумя возможными соседними значениями нет возможных значений), которые эта величина принимает с определенными вероятностями. Другими словами, возможные значения дискретной случайной величины можно перенумеровать. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (в последнем случае множество всех возможных значений называют счетным).

Законом распределения называют перечень ее возможных значений и соответствующих им вероятностей. Текстпрограммы:

Program Puasson_Kolmagor;

Uses CRT, Graph;

Const a = 2.0; d = 8; n = 500; k = d+1; Lkr = 1.2;

Top = 68; Left = 45; Width = 550; Height = 340; Ny = 14;

Type Real = Extended;

Var GrDriver, GrMode, X1, Y1, X2, Y2 : Integer;

i, j, w : Word; SumS, SumA, Ran, Dk, Kol : Real;

Xmin, Xmax, Ry, Mx, Dx, Rx, Sx, Ex, Sk, h : Real;

HZoom, VZoom, Lx, Ly : Real; Txt : String[20];

S, AL, AY, Y : Array[0..d] Of Real;

X : Array[1..n] Of Byte;

Procedure Bue; Far;

Begin

AssignCrt(Output); Rewrite(Output); CloseGraph;

Window(1, 1, 80, 25); ClrScr;

WriteLn ('Programed by Yuri Melnikov RD-2');

WriteLn ('All rights reserved. (c) 2004.');

WriteLn ('Thanks for attention.');

End;

Procedure Pause;

Var TextAtt, i : Byte;

Begin

Delay(1000); While KeyPressed Do ReadKey;

TextAtt := TextAttr; TextColor(7);

GoToXY(1, 25); For i := 1 To 5 Do WriteLn;

Write(' Press any key to continue or <ESC> to exit...');

Repeat Until KeyPressed; If ReadKey = #27 Then Halt;

TextAttr := TextAtt; GoToXY(1, 1); ClearDevice;

End;

Function Pwr(x, p: Real) : Real; {Возведениевстепень}

Begin

If x > 0 Then Pwr := exp(p*ln(x))

Else Pwr := 0;

End;

Function Fact(x : Word) : Real;

{Справка для Егоровой Т.П. Считает до 1000!}

Var i : Word; F : Real;

Begin

F := 1;

If x > 0 Then For i := 1 To x Do F := F * i;

Fact := F;

End;

Function f(m : Word) : Real;

Begin

If m >= 0 Then f := Pwr(a, m)*exp(-a) / Fact(m)

Else f := 0;

End;

Begin

Assign(Output, ''); Rewrite(Output); Randomize; ExitProc := @Bue;

DetectGraph(GrDriver, GrMode); InitGraph(GrDriver, GrMode, 'BGI');

SumS := 0;

For i := 0 To d Do Begin

S[i] := f(i); SumS := SumS + S[i];

End;

For i := 0 To d Do Begin al[i] := 0;

For j := 0 To i Do al[i] := al[i] + S[j] / SumS;

End;

For w := 1 To n Do Begin

Ran := Random;

For i := 0 To d Do Begin

If al[i] > Ran Then Begin

x[w] := i; Break;

End;

End;

End; WriteLn; Write(' Смоделирована ');

WriteLn('последовательность случайных чисел (з. Пуассона):');

WriteLn; Mx := 0;

For i := 1 To n Do Begin

Write(X[i]:2, ' ');

Mx := Mx + X[i] / n;

End; Pause; Dx := 0; Sk := 0;

Xmin := X[1]; Xmax := Xmin;

For i := 1 To n Do Begin

Dx := Dx + Sqr(x[i]-Mx) / (n - 1);

If Xmin > X[i] Then Xmin := X[i];

If Xmax < X[i] Then Xmax := X[i];

End;

Sx := Sqrt(Dx); WriteLn;

Rx := d; h := Rx / k; Ex := -3;

For i := 1 To n Do Begin

Sk := Sk + Sqr(x[i]-Mx)*(x[i]-Mx)/(Dx*Sx*k);

Ex := Ex + Sqr(x[i]-Mx)*Sqr(x[i]-Mx)/(k*Sqr(Dx));

End;

WriteLn(' Диапазонзначений: ', Xmin:0:3, ' - ', Xmax:0:3);

WriteLn(' Мат. ожидание: ', Mx:0:3);

WriteLn(' Дисперсия: ', Dx:0:3);

WriteLn(' Ср. кв. отклонение: ', Sx:0:3);

WriteLn(' Коэффициент скошенности: ', Sk:0:3);

WriteLn(' Эксцесс: ', Ex:0:3); Pause;

For i := 1 To n Do Begin

j := Trunc((x[i]-Xmin) / h); If j > d Then j := d;

y[j] := y[j] + 1/n;

End; Dk := 0;

For i := 0 To d Do Begin ay[i] := 0; al[i] := 0;

For j := 0 To i Do Begin

ay[i] := ay[i] + y[j];

al[i] := al[i] + f(j);

End;

If Dk < Abs(ay[i]-al[i]) Then Dk := Abs(ay[i]-al[i]);

End; Ry := 0;

For i := 0 To d Do Begin

If Ry < y[i] Then Ry := y[i];

End;

HZoom := Width / Rx; VZoom := Height / Ry;

WriteLn; WriteLn(' Гистограмма смоделированной СВ :');

Lx := Rx / k; Ly := Ry / Ny; SetTextStyle(0,1,0);

SetViewPort(Left, Top, Left + Width, Top + Height, False);

For i := 0 To k Do Begin

X1 := Round(Lx*i*HZoom);

SetColor(7); Line(X1, 0, X1, Height + 5);

Str((Lx*i+Xmin):0:2, Txt);

OutTextXY(X1+4, Height+10, Txt);

SetColor(DarkGray); Line(X1, 0, X1, Height);

End; SetTextStyle(0, 0,0);

For i := 0 To Ny Do Begin

Y1 := Round(Height-Ly*i*VZoom);

SetColor(7); Line(-5, Y1, Width, Y1); Str(Ly*i:0:2, Txt);

OutTextXY(-40, Y1-4, Txt);

SetColor(DarkGray); Line(0, Y1, Width, Y1);

Y1 := Round(Height-Ly*(i-0.5)*VZoom);

If i > 0 Then Line(0, Y1, Width, Y1);

End;

SetColor(White); SetFillStyle(8, 7);

For i := 1 To k Do Begin

X1 := Round((i-1)*Lx*HZoom-Lx*HZoom*0.05);

X2 := Round(i*Lx*HZoom-Lx*HZoom*0.95);

Y1 := Round(Height - y[i-1]*VZoom); Y2 := Height;

Bar3D(X1, Y1, X2, Y2, 0, False);

End;

MoveTo(0, Round(Height-f(0)*VZoom));

For i := 1 To d Do

LineTo(Round(i*HZoom), Round(Height-f(i)*VZoom));

Line(0, -30, 0, Height+5); Line(0, -28, 2, -15); Line(0, -28, -2, -15);

Line(-5, Height, Width + 30, Height);

OutTextXY(-36,-30,'f(x)');

OutTextXY(Width+20, Height+5,'x');

Line(Width + 28, Height, Width + 15, Height-2);

Line(Width + 28, Height, Width + 15, Height+2);

Pause; WriteLn;

Kol := Dk * Sqrt(n);

WriteLn(' Критерий Колмогорова:'); WriteLn;

WriteLn(' F(x) F~(x) '); WriteLn;

For i := 0 To d Do WriteLn(al[i]:10:2, ay[i]:14:2);

WriteLn; WriteLn(' Максимум модуля разности: ', Dk:0:2);

WriteLn(' Значение лямбда: ', Kol:2:2);

WriteLn(' Лямбда критическое (а=0.1): ', Lkr:2:2);

Write(' Так как ', Kol:0:2, ' ');

IfKol < LkrThenBegin

WriteLn('< ', Lkr:0:2, ' то расхождения можно считать случайными.');

WriteLn(' Нет оснований отвергнуть гипотезу о распределении');

Write(' данной совокупности по закону Пуассона.');

End;

If Kol > Lkr Then Begin

WriteLn('> ', Lkr:0:2, ' то расхождения следует считать неслучайными.');

WriteLn(' Нет оснований принять гипотезу о распределении');

Write(' данной совокупности по закону Пуассона.');

End;

Pause;

End.

Результаты работы программы

Смоделирована последовательность случайных чисел (з.Пуассона)


F(x) F~(x)

0.14 0.15

0.41 0.45

0.68 0.71

0.86 0.88

0.95 0.95

0.98 0.98

1.00 0.99

1.00 1.00

1.00 1.00

Воспользуемся критерием Колмогорова. В качестве меры расхождения между теоретическим и статистическим распределениями рассматривается максимальное значение модуля разности между статистической функцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).

D = max | F*(x)- F(x)|

D = 0.04

Далее определяем величину l по формуле:

,

где n – число независимых наблюдений.

Основанием для выбора в качестве меры расхождения величины D является исключительная простота её закона распределения. А.Н. Колмогоров доказал, что, какова бы ни была функция распределения F(x) непрерывной случайной велечины X, при неограниченном возрастании числа независимых наблюдении n вероятность неравенства

стремится к пределу

Значения вероятности , подсчитанные по формуле приведённой выше занесены в таблицу, по данной таблице находим вероятность

P(l) = 0,711.

Это есть вероятность того, что (если величина х действительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождение между F*(x) и F(x) будет не меньше, чем наблюдаемое.

Нет оснований отвергать гипотезу о том, что наш закон распределения является геометрическим законом распределения.

Критерий Колмогорова:

F(x) F~(x)

0.14 0.15

0.41 0.46

0.68 0.71

0.86 0.88

0.95 0.95

0.98 0.98

1.00 0.99

1.00 1.00

1.00 1.00


Список используемой литературы

1. «Теория вероятностей» В.С. Вентцель

2. «Теория вероятностей (Задачи и Упражнения)» В.С. Вентцель, Л.А. Овчаров

3. «Справочник по вероятностным расчётам».

4. «Теория вероятностей и математическая статистика» В.Е. Гмурман

5. «Руководство к решению задач по теории вероятностей и математической статистике» В.Е. Гмурман.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно