Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Системы счисления 4

Тип Реферат
Предмет Математика
Просмотров
1317
Размер файла
45 б
Поделиться

Ознакомительный фрагмент работы:

Системы счисления 4

Цель работы

1. Понять принципы позиционной системы счисления.

2. Научиться переводить числа из одной системы счисления в другую.

3. Уметь производить арифметические действия над числами, представленными в различных системах счисления.

1. Общие сведения о системах счисления

Под системой счисления принято понимать совокупность приемов записи чисел. Условные знаки, которые при этом применяются, называют цифрами. В некоторых системах счисления кроме цифр могут использоваться специальные символы. Таким образом, в системах счислениях числа записываются как последовательность цифр или специальных символов. Системы счисления подразделяются на позиционные и непозиционные.

В непозиционной системе счисления значение цифры не зависит от ее положения в записи числа. К непозиционной системе счисления относится, так называемая, Римская система счисления. Например, возьмем число ХХХ из Римской системы счисления. В данном числе цифра Х в любом месте означает число десять.

В позиционных системах счисления значение каждой цифры зависит от ее положения (позиции) в ряду цифр, изображающих это число. Например, в числе 999 (десятичная система счисления) первая справа цифра 9 означает количество единиц, содержащихся в числе, вторая – количество десятков, третья – количество сотен. Принимая за основание системы различные числа можно получить соответствующие системы счисления. Число Р единиц одного разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления, а сама система называется Р-ичной. Поэтому для записи произвольного числа в какой-либо позиционной системе счисления достаточно иметь Р различных цифр. Таким образом, любая позиционная система с любым целым основанием Р (при Р>1) использует Р различных цифр а, которые обозначают последовательный ряд чисел от 0 и кончая числом Р-1. Эти цифры называются базисными.

Число записывается в виде последовательности Р-ичных цифр, которая разделена точкой на целую и дробную части. Если каждый из символов означает некоторую Р-ичную цифру, то запись числа имеет вид . Каждой цифре из этой последовательности принято определенное значение. Цифра, стоящая в некотором разряде, имеет значение в Р раз больше того, которое она имела бы в разряде с номером, меньшим на 1. И наоборот, в Р раз меньшее того, которое она имела бы в разряде с номером, большим на 1.

2. Позиционные системы счисления

Как было сказано, количество различных цифр, применяемых в позиционной системе счисления, называют ее основанием. Принимая за основание системы различные числа можно получить соответствующие системы счисления. К позиционным системам счисления, получившим наибольшее распространение, относятся десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Для того, чтобы отличать в какой системе представлено то или иное число, в дальнейшем будем записывать число с указанием используемой системы счисления. Например, - число 375 в десятичной системе счисления, а число - число 375 в восьмеричной системе счисления.

2.1. Десятичная система счисления

Это наиболее широко распространенная система счисления, которая использует 10 различных базисных цифр для представления любой величины. При записи чисел в десятичной системе счисления используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Несмотря на простоту и привычность десятичной системы счисления использование ее при передачи информации в вычислительных машинах представляется неудобной и технически не экономичной. Поэтому при организации вычислительных процессов в ЭВМ используются системы счисления с другими основаниями.

2.2. Двоичная система счисления

Большинство элементов, из которых строится ЭВМ, по своей физической природе могут находиться лишь в одном из двух состояний. Такие элементы называются двухпозиционными. Одно из устойчивых состояний элемента принимается за изображение цифры 0, а другое за изображение цифры 1. С помощью двухпозиционных элементов легко изображаются разряды двоичного числа. Поэтому двоичная система счисления имеет преимущества, и она оказывается очень удобной для применения в ЭВМ. Двоичная система счисления имеет только две цифры: 0 и 1. Это минимальное количество цифр, которое может быть принято в системе счисления.

Как и в десятичной системе счисления, в двоичной системе для отделения дробной части от целой используется точка, а перед отрицательным числом ставится минус (-):

2.3 Восьмеричная система счисления

В цифровых схемах и в электронных системах получила распространение восьмеричная система счисления. Данная система удобна тем, что восьмеричная запись какого-либо числа в три раза короче его двоичной записи. В данной системе счисления коэффициенты а принимают восемь различных значений - 0, 1, 2, 3, 4, 5, 6, 7.

Поскольку , то каждый восьмеричный символ может быть представлен трехбитовым числом. Этих чисел восемь, как и символов в восьмеричной системе счисления. Как и в рассмотренных системах счисления, в восьмеричной системе используются дробные и отрицательные числа:

2.4. Шестнадцатеричная система счисления

Для систем счисления с основанием больше “10”, арабских цифр для представления чисел не хватит. Поэтому в этих случаях дополнительно вводят специальные символы. К таким системам счисления относится шестнадцатеричная система счисления.

В шестнадцатеричной системе счисления используются 16 базисных символов: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, E, F. Выбор шестнадцатеричной системы счисления обуславливается тем, что , т.е. эту систему можно использовать как средство сокращенной записи четырехразрядного двоичного числа.

Следует помнить, что шестнадцатеричные и восьмеричные числа – это только способ представления двоичных чисел.

Для представления дробных и отрицательных шестнадцатеричных чисел используется, соответственно, точка и знак минуса (-):

3. Перевод чисел в позиционных системах счисления

3.1. Перевод из десятичной системы счисления

Для перевода целого десятичного числа в другую систему счисления, необходимо разделить исходное число на основание системы счисления в которое оно переводится. При этом надо определять остатки деления. Остаток первого деления является значением младшего разряда. Затем полученное частное делится на выбранное основание. Процедуру деления продолжают до тех пор пока не станет меньше делителя, т.е. основания системы счисления, в которую осуществляется перевод. Значение последнего частного будет наибольшим разрядом, т.е. запись нового числа производится в обратном порядке: от частного к первому остатку, используя все промежуточные остатки.

При переводе в шестнадцатеричную систему счисления остатки, значения которых больше 9, необходимо заменить соответствующим буквенным эквивалентом: 10-А, 11-В, 12-С, 13-D, 14-E, 15-F.

Пример перевода целого десятичного числа 95:

а) в двоичную систему счисления

95 2

94 47 2

1 46 23 2

1 22 11 2

1 10 5 2

1 4 2 2

1 2 1

0 Место для формулы.

б) в восьмеричную систему счисления

95 8

88 11 8

7 8 1

3

в) в шестнадцатеричную систему счисления

95 16

80 5

15

При переводе правильных десятичных дробей, необходимо умножить значение этой дроби на основание системы счисления, в которую осуществляется перевод. Значение целой части результата первого умножения присваивается старшему разряду дробной части. Затем целая часть не рассматривается и производится следующее умножение дробной части. Процедуру умножения повторяют до тех пор, пока результат умножения не будет равен целому числу и этот результат будет младшим разрядом, либо не будет достигнута требуемая точность.

Примеры перевода правильной десятичной дроби 0.36:


а) в двоичную

*0.36

2

*0.72

2

*1.44

2

*0.88

2

1.76

0.3610 => 0.01012

б) в восьмеричную

*0.36

8

*2.88

8

*7.04

8

*0.32

8

2.56

0.3610 => 0.27028

в) в шестнадцатеричную

*0.36

16

*5.76

16

*12.16

16

*2.56

16

8.96

0.3610 => 0.5C281



Для перевода неправильной десятичной дроби, необходимо перевести отдельно дробную и целую часть, а полученные результаты сложить.

Например, перевести в двоичную систему счисления неправильную десятичную дробь 14.375.

1410=> 11102 0.37510 => 0.0112 14.37510 => 1110.0112

3.2. Перевод в десятичную систему счисления

Для перевода из любой позиционной системы счисления в десятичную систему счисления необходимо записать это число в виде суммы:

где Р – основание системы из которой осуществляется перевод; a – число, соответствующее базисной цифре Р-ичной системы счисления; n– число цифр в целой части; m– число цифр в дробной части.

Например, перевести число 110.101 из двоичной системы счисления в десятичную:

110.1012 = 1*22 + 1*21 + 0*20 + 1*2-1 + 0*2-2 + 1*2-3 = 6.62510

Для удобства расчета в табл. 1 приведены значения степеней позиционных систем счисления.

Таблица 1.

Значения степеней позиционных систем счисления

Степень

Основание

4321-1-2-3
2168420.50.250.125
840965126480.1250.01560.002
16655364096256160.06250.0040.0002

3.3. Перевод из двоичной системы счисления в восьмеричную и шестнадцатеричную

Основания восьмеричной и шестнадцатеричной систем счисления (q) являются степенью основания двоичной системы (p) : q = pk, где k – целое число, равное 3 для восьмеричной системы счисления и 4 для шестнадцатеричной. Поэтому перевод из двоичной системы осуществляется разбиением двоичного числа на группы по три цифры в каждой для восьмеричной и по четыре для шестнадцатеричной. Отчет ведется от точки разделяющей целую часть от дробной в обе стороны. Затем каждая группа заменяется соответствующей цифрой из соответствующих систем счисления (см. табл. 2 и 3). Недостающие биты двоичного числа дополняются нулями: впереди – для целой части и в конце – для дробной части. Например, необходимо перевести двоичное число 1010001110.00111 в восьмеричное и шестнадцатеричное число:

а) в восьмеричное

1010001100.001112 = 001 010 001 100.001 1102 = 1214.168

б) в шестнадцатеричное

1010001100.001112 = 0010 1000 1100.0011 10002 = 28С.3816

Таблица 2. Таблица 3.

Двоичные – восьмеричные Двоичные – шестнадцатеричные

000 – 0 001 – 1 010 – 2 011 – 3

100 – 4 101 – 5 110 – 6 111 - 7

0000 – 0 0001 – 1 0010 – 2 0011 – 3

0100 – 4 0101 – 5 0110 – 6 0111 – 7

1000 – 8 1001 – 9 1010 – А 1011 – В

1100 – С 1101 – D 1110 – E 1111 - F

3.4. Перевод в двоичную систему счисления

из восьмеричной и шестнадцатеричной

Для перевода в двоичную систему из восьмеричной или шестнадцатеричной систем счисления необходимо каждое число заменить двоичным эквивалентом (см. табл.2 и 3). Например: 34.58 = 011 100.1012 ; A3.E16 = 1010 0011.11102.

3.5. Перевод из восьмеричной системы в шестнадцатеричную

Для перевода из восьмеричной системы счисления в шестнадцатеричную систему счисления необходимо представить это число в виде двоичного числа. Затем объединить в группы по 4 бита и заменить соответствующим числом из шестнадцатеричной системы счисления (см. табл.2 и 3). Например: 3458 = 011 100 1012 = 0111001012 = Е516

3.6. Перевод из шестнадцатеричной системы в восьмеричную

Для перевода шестнадцатеричной системы счисления в восьмеричную необходимо представить это число в виде двоичного числа. Затем объединить в группы по 3 бита и заменить соответствующим числом из восьмеричной системы счисления (см. табл.2 и 3). Например: В516 = 1011 01012 = 010 110 1012 = 2658

4. Арифметические действия в позиционных системах счисления

Арифметические действия (сложение, вычитание, умножение и деление) над числами в двоичной, восьмеричной и шестнадцатеричной системах счисления выполняются с использованием таблиц сложения и умножения подобно тому, как это делается в десятичной системе счисления.

Таблицы 4 и 5 предназначены для выполнения сложения и умножения в двоичной системе счисления, таблицы 6 и 7 – в восьмеричной системе счисления, а таблицы 8 и 9 – в шестнадцатеричной системе счисления. Ниже приведены примеры сложения и умножения в различных системах счисления.

а) сложение и умножение в двоичной системе счисления


+ 1100111.011

10011.111

1111011.010

* 11001

11

+ 11001

11001

1001011


б) сложение и умножение в восьмеричной системе счисления

+ 327.71102

35.67735

365.61037

* 732.6

6.3

+ 262.02

5440.4

5722.42


в) сложение и умножение в шестнадцатеричной системе счисления


+ 1А.787

9С.271

В6.9F8

*10F.A2

0.F1

10F A2

A9C5 4

AA.D4 E2


Этими же таблицами можно пользоваться при решении примеров на вычитание и деление.



Таблица 4.

0+0=01+0=1
0+1=11+1=10

Таблица 5.

0*0=01*0=0
0*1=01*1=1


Таблица 6.

+1234567
123456710
2345671011
34567101112
456710111213
5671011121314
67101112131415
710111213141516

Таблица 7.

*1234567
11234567
224610121416
3361114172225
44101420243034
55121724313643
66142230364452
77162534435261

Таблица 8.

+123456789ABCDEF
123456789ABCDEF10
23456789ABCDEF1011
3456789ABCDE F101112
456789ABCDEF10111213
56789ABCDEF1011121314
6789ABCDEF101112131415
789ABCDEF10111213141516
89ABCDEF1011121314151617
9ABCDEF101112131415161718
ABCDEF10111213141516171819
BCDEF101112131415161718191A
CDEF101112131415161718191A1B
DEF101112131415161718191A1B1C
EF101112131415161718191A1B1C1D
F101112131415161718191A1B1C1D1E

Таблица 9.

*123456789ABCDEF
1123456789ABCDEF
22468ACE10121416181A1C1E
3369CF1215181B1E2124272A2D
448C1014181C2024282C3034383C
55AF14191E23282D32373C41464B
66C12181E242A30363C42484E545A
77E151C232A31383F464D545B6269
881018202830384048505860687078
99121B242D363F48515A636C757E87
AA141E28323C46505A646E78828C96
BB16212C37424D58636E79848F9AA5
CC1824303C4854606C7884909CA8B4
DD1A2734414E5B6875828F9CA9B6C3
EE1C2A38465462707E8C9AA8B6C4D2
FF1E2D3C4B5A69788796A5B4C3D2E1

5. Порядок выполнения работы

Для выполнения работы по системам счисления необходимо изучить теоретический материал и получить номер варианта и из таблицы 10 выбрать числовые данные и выполнить перевод из одной системы счисления в другую по следующей схеме:

1. Перевод из десятичной системы в двоичную.

2. Перевод из десятичной системы в восьмеричную.

3. Перевод из десятичной системы в шестнадцатеричную.

4. Перевод из двоичной системы в восьмеричную.

5. Перевод из двоичной системы в десятичную.

6. Перевод из двоичной системы в шестнадцатеричную.

7. Перевод из восьмеричной системы в двоичную.

8. Перевод из восьмеричной системы в десятичную.

9. Перевод из восьмеричной системы в шестнадцатеричную.

10. Перевод из шестнадцатеричной системы в двоичную.

11. Перевод из шестнадцатеричной системы в восьмеричную.

12. Перевод из шестнадцатеричной системы в десятичную.

Из таблицы 11 в соответствии с номером варианта необходимо выбрать для проведения арифметических действий в системах счисления по следующей схеме:

1. Произвести сложение в двоичной системе.

2. Произвести умножение в двоичной системе.

3. Произвести сложение в восьмеричной системе.

4. Произвести умножение в восьмеричной системе.

5. Произвести сложение в шестнадцатеричной системе.

6. Произвести умножение в шестнадцатеричной системе.

6. Содержание отчета

1. Представить результаты переводов из одной системы счисления в другую.

2. Предоставить результаты арифметических действий.

7. Контрольные вопросы

1. Различие позиционных и непозиционных систем счисления.

2. Принцип перевода неправильных десятичных дробей в другие системы счисления.

3. Принцип перевода в десятичную систему счисления.

4. Как осуществляется перевод из восьмеричной системы счисления в шестнадцатеричную и наоборот.

8. Литература

1. Микропроцессоры. / Под ред. Л. Н. Преснухина. М.: Высш. школа, 1986. Т. 1. 347 с.

2. Левенталь Л. Введение в микропроцессоры. М.: Энергоатомиздат, 1983. 463 с.

3. К. А. Нешумова. Электронно-вычислительные машины и системы. М.: Высшая школа, 1989. – 366 с.

4. А. М. Кириличев. Основы вычислительной техники. – М.: Недра, 1988. – 350 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно