Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Прогнозирование на основе регрессионных моделей

Тип Реферат
Предмет Математика
Просмотров
660
Размер файла
84 б
Поделиться

Ознакомительный фрагмент работы:

Прогнозирование на основе регрессионных моделей

По имеющимся исходным данным выявить и оценить на основе регрессионных моделей производственные связи. Провести расчет прогнозных значений показателей, когда уровень факторных показателей на 30% превышают средние величины исходных данных.

Исходные данные представлены в таблице:

Удой молока на среднегодовую корову, кгРасход кормов на 1 корову, корм. ед.Удельный вес чистопородных коров в стаде, %Себестоимость молока за 1 кг, руб.
1328048,20610,313
2292043,10540,413
3514060,70700,268
4463060,10670,310
5495059,40710,309
6500052,50740,288
7279044,00450,357
8434054,20680,247
9416053,20650,305
10266046,40510,376
11296047,10520,351
12323046,10570,356
13348053,90580,312
14323053,40520,415
15237039,40440,411
16261040,20500,380
17300045,50520,326
18296041,40490,341
19310047,80530,398
20272046,30570,405

Необходимо определить тесноту связи между данными признаками. Для этого вначале воспользуемся коэффициентом корреляции рангов Спирмэна. Этот показатель основан на корреляции не самих значений коррелируемых признаков, а их рангов. Для его расчета присвоим ранги значениям соответствующих признаков, затем найдем их разность d. Эти вычисления отразим в нижеследующих таблицах. Далее вычислим непосредственно сам коэффициент, который равен: , ( n – число наблюдаемых пар значений признаков.)

Расчетные таблицы для определения коэффициента корреляции рангов Спирмэна

Удой молока на среднегодовую корову, кгСебестоимость молока за 1 кг, руб.РангиРазность рангов d = Nx - Nyd2
xyNxNy
32800,313813-525
29200,41315213169
51400,268119-18324
46300,31415-11121
49500,309316-13169
50000,288218-16256
27900,357168864
43400,247520-15225
41600,305617-11121
26600,37618711121
29600,35113,5103,512,25
32300,3569,590,50,25
34800,312714-749
32300,4159,518,572,25
23700,41120317289
26100,3819613169
30000,326121200
29600,34113,5112,56,25
31000,398115636
27200,40517413169
n = 20∑ d 2 =2398
ρ =-0,803

Из выше приведенного можно сказать о сильной обратной связи между удоем молока и себестоимостью, т.е. при увеличении удоя себестоимость молока снижается.

Расход кормов на 1 корову, корм.ед.Себестоимость молока за 1 кг, руб.РангиРазность рангов d = Nx - Nyd2
xyNxNy
48,20,313913-416
43,10,41317215225
60,70,268119-18324
60,10,31215-13169
59,40,309316-13169
52,50,288818-10100
440,357168864
54,20,247420-16256
53,20,305717-10100
46,40,376127525
47,10,351111011
46,10,356149525
53,90,312514-981
53,40,41561525
39,40,41120317289
40,20,3819613169
45,50,326151239
41,40,3411811749
47,80,398105525
46,30,405134981
n = 20∑ d 2 =2202
ρ =-0,656

Так как значение коэффициента отрицательно, следовательно, имеем обратную связь между расходом кормов на 1 корову и себестоимостью молока.



Удельный вес чистопородных коров в стаде, %

Себестоимость молока за 1 кг, руб.РангиРазность рангов d = Nx - Nyd2
xyNxNy
610,313713-636
540,413112981
700,268319-16256
670,31515-10100
710,309216-14196
740,288118-17289
450,35719811121
680,247420-16256
650,305617-11121
510,376167981
520,351131039
570,3569900
580,312814-636
520,41513112144
440,41120317289
500,3817611121
520,326131211
490,3411811749
530,398125749
570,40594525
n = 20∑ d 2 =2260
ρ =-0,699

Имеется обратная зависимости между удельным весом чистопородных коров в стаде и себестоимостью молока.

Удой молока на среднегодовую корову, кгРасход кормов на 1 корову, корм.ед.РангиРазность рангов d = Nx - Nyd2
xyNxNy
328048,289-11
292043,11517-24
514060,71100
463060,14224
495059,43300
500052,528-636
279044161600
434054,25411
416053,267-11
266046,41812636
296047,113,5112,56,25
323046,19,514-4,520,25
348053,97524
323053,49,563,512,25
237039,4202000
261040,2191900
300045,51215-39
296041,413,518-4,520,25
310047,8111011
272046,31713416
n = 20∑ d 2 =172
ρ =0,871

Полученное значение коэффициента корреляции рангов Спирмэна свидетельствует о сильной прямой связи между удоем молока и расходом кормов на 1 корову, т.е. при увеличении расхода кормов в пересчете на 1 корову увеличивается и удой молока на среднегодовую корову.

Удой молока на среднегодовую корову, кгУдельный вес чистопородных коров в стаде, %РангиРазность рангов d = Nx - Nyd2
xyNxNy
3280618711
2920541511416
51407013-24
46306745-11
4950713211
5000742111
2790451619-39
4340685411
4160656600
266051181624
29605213,5130,50,25
3230579,590,50,25
34805878-11
3230529,513-3,512,25
237044202000
261050191724
3000521213-11
29604913,518-4,520,25
3100531112-11
272057179864
n = 20∑ d 2 =142
ρ =0,893

Значение положительно, поэтому имеемхарактеризует сильную прямую связь между удоем молока и удельным весом чистопородных коров в стаде и показывает, что вариация результативного признака на 89,3 % обусловлена вариацией факторного признака (согласно коэффициенту Спирмэна).

Расход кормов на 1 корову, корм.ед.Удельный вес чистопородных коров в стаде, %РангиРазность рангов d = Nx - Nyd2
xyNxNy
48,2619724
43,1541711636
60,77013-24
60,16725-39
59,4713211
52,57481749
44451619-39
54,2684400
53,2657611
46,4511216-416
47,1521113-24
46,157149525
53,95858-39
53,452613-749
39,444202000
40,250191724
45,552151324
41,449181800
47,8531012-24
46,357139416
n = 20∑ d 2 =244
ρ =0,817

О сильной прямой зависимости между расходом кормов в пересчете на 1 корову и удельным весом чистопородных коров в стаде говорит значение коэффициента. Чем выше удельный вес, тем выше расход кормов.

Но следует иметь в виду, что, поскольку коэффициент Спирмэна учитывает разность только рангов, а не самих значений признаков, он менее точен по сравнению с линейным коэффициентом корреляции. Воспользуемся последним.

Воспользуемся программным пакетом Stata 7.

Корреляционная матрица имеет вид:

. corrudkormvessst

(obs=20)

| ud korm ves sst

-------------+------------------------------------

ud | 1.0000

korm | 0.8851 1.0000

ves | 0.9401 0.8290 1.0000

sst | -0.7875 -0.6497 -0.7587 1.0000

· ud – удой молока на среднегодовую корову,

· korm – расход кормов на 1 корову,

· ves – удельный вес чистопородных коров в стаде,

· sst – себестоимость молока за 1 кг.

Можно сделать вывод, что присутствует обратная связь между себестоимостью и удоем молока (r = - 0,79), себестоимостью и удельным весом (r = - 0,76),себестоимостью и расходом кормов (r = - 0,65).Имеется сильная прямая связи между удоем молока и расходом кормов (r = 0,89), удоем молока и удельным весом (r = 0,94), расходом кормов и удельным весом (r = 0,83). Если сравнивать значения, полученные линейным коэффициентом корреляции и ранговым коэффициентом Спирмэна, то расхождения не превысят 8 %. В большинстве же своем погрешность составляет около 1 %.

Теперь проверим коэффициенты корреляции на значимость:

. pwcorr ud korm ves sst

| ud korm ves sst

-------------+------------------------------------

ud | 1.0000

korm | 0.8851 1.0000

ves | 0.9401 0.8290 1.0000

sst | -0.7875 -0.6497 -0.7587 1.0000

Всекоэффициентызначимы.

Построим модель.

Так как значения удоя молока и значения других показателей отличаются на порядок, то будем использовать вместо переменной «удой молока» переменную натурального логарифма удоя молока.

Рассмотрим в качестве результативного фактора себестоимость молока за 1 кг, поскольку важен расчет именно себестоимости и определение от каких факторов и насколько она зависит. Удой молока, расход кормов на 1 корову и удельный вес чистопородных коров в стаде могут повлиять на значение себестоимости.

Приведем графики зависимости себестоимости от каждого из факторов:

От логарифма удоя молока

От расхода кормов на 1 корову


От удельного веса чистопородных коров в стаде

Графики демонстрируют нам обратную зависимость между результативным фактором – себестоимостью и объясняющим фактором, что подтверждается значениями коэффициентов корреляции.

Вначале рассмотрим линейную модель по всем факторам:

. reg sst lnud korm ves

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.37

Model | .031800232 3 .010600077 Prob > F = 0.0005

Residual | .016350718 16 .00102192 R-squared = 0.6604

-------------+------------------------------ Adj R-squared = 0.5968

Total | .04815095 19 .002534261 Root MSE = .03197

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud | -.2305787 .1162704 -1.98 0.065 -.4770609 .0159036

korm | .0026417 .0025775 1.02 0.321 -.0028223 .0081057

ves | -.0000138 .0024772 -0.01 0.996 -.0052651 .0052376

_cons | 2.088534 .7538614 2.77 0.014 .4904194 3.686649

------------------------------------------------------------------------------

Хотя у этой модели и достаточно хороший коэффициент детерминации и согласно F-критерию Фишера оно значимо, параметры при переменных lnud, korm, ves не значимы по t-критерию Стьюдента с P-значениями 0.065, 0.321 и 0.996. Значит, эта модель не подходит.

Построим модель вида:

. reg sst lnud1 korm1 ves1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.32

Model | .031744654 3 .010581551 Prob > F = 0.0005

Residual | .016406296 16 .001025393 R-squared = 0.6593

-------------+------------------------------ Adj R-squared = 0.5954

Total | .04815095 19 .002534261 Root MSE = .03202

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 14.46292 6.110319 2.37 0.031 1.509625 27.41622

korm1 | -5.633853 5.967609 -0.94 0.359 -18.28462 7.016912

ves1 | .6831225 6.892859 0.10 0.922 -13.92909 15.29533

_cons | -1.33304 .6029802 -2.21 0.042 -2.611301 -.0547791

------------------------------------------------------------------------------

Видим что коэффициент детерминации хорош - 0,659 и по F-критерию Фишера уравнение значимо. Но параметры при переменных korm1, ves1 не значимы по t-критерию Стьюдента с P-значениями 0.359 и 0.922. Значит, эта модель не подходит.

Будем рассматривать различные комбинации переменных при включении в модель. Построим модель вида:

. reg sst lnud korm1 ves1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.09

Model | .031497211 3 .01049907 Prob > F = 0.0006

Residual | .016653739 16 .001040859 R-squared = 0.6541

-------------+------------------------------ Adj R-squared = 0.5893

Total | .04815095 19 .002534261 Root MSE = .03226

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud | -.2065493 .0898758 -2.30 0.035 -.3970775 -.0160212

korm1 | -5.156249 5.939941 -0.87 0.398 -17.74836 7.435864

ves1 | 1.094516 6.895036 0.16 0.876 -13.52231 15.71134

_cons | 2.109487 .8816345 2.39 0.029 .2405058 3.978469

------------------------------------------------------------------------------

Так же как и в предыдущих моделях, значение R-квадрата хорошее, уравнение значимо по F-критерию Фишера, но одновременно с этим параметры при переменных korm1, ves1 с P-значениями 0.398 и 0.876 соответственно не значимы по t-критерию Стьюдента. Также отбросим эту модель.

Построим модель вида:

. reg sst lnud1 korm ves1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.60

Model | .032029999 3 .010676666 Prob > F = 0.0004

Residual | .016120951 16 .001007559 R-squared = 0.6652

-------------+------------------------------ Adj R-squared = 0.6024

Total | .04815095 19 .002534261 Root MSE = .03174

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 15.74117 6.497854 2.42 0.028 1.966333 29.516

korm | .0027978 .0025644 1.09 0.291 -.0026386 .0082341

ves1 | .0207899 6.780318 0.00 0.998 -14.35284 14.39442

_cons | -1.732706 .8136604 -2.13 0.049 -3.457589 -.0078235

------------------------------------------------------------------------------

R-квадрат хорош- 0,665, уравнение значимо согласно F-критерию Фишера. Но при этом параметры при переменных korm, ves1 с P-значениями 0.291 и 0.998 соответственно не значимы по t-критерию Стьюдента. Также отбросим эту модель.

Рассмотрим модель:

. reg sst lnud1 korm1 ves

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.31

Model | .031738225 3 .010579408 Prob > F = 0.0005

Residual | .016412725 16 .001025795 R-squared = 0.6591

-------------+------------------------------ Adj R-squared = 0.5952

Total | .04815095 19 .002534261 Root MSE = .03203

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 14.53007 7.378598 1.97 0.066 -1.111856 30.172

korm1 | -5.544031 5.927707 -0.94 0.364 -18.11021 7.022147

ves | -.0001462 .002454 -0.06 0.953 -.0053485 .005056

_cons | -1.322613 .969369 -1.36 0.191 -3.377583 .7323579

------------------------------------------------------------------------------

Как и в предыдущих моделях, несмотря на значимость уравнения и хорошее значение коэффициента детерминации, эту регрессионную модель мы также отбросим, так как в ней незначимы параметры при переменных lnud1, korm1, ves согласно t-критерию Стьюдента.

Рассмотрим модель:

. reg sst lnud lnud2 korm korm2 ves ves2

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 6, 13) = 4.52

Model | .032557159 6 .005426193 Prob > F = 0.0109

Residual | .015593791 13 .001199522 R-squared = 0.6761

-------------+------------------------------ Adj R-squared = 0.5267

Total | .04815095 19 .002534261 Root MSE = .03463

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud | -5.729043 9.44621 -0.61 0.555 -26.13634 14.67825

lnud2 | .341597 .5910669 0.58 0.573 -.9353253 1.618519

korm | .0132344 .0388671 0.34 0.739 -.0707327 .0972016

korm2 | -.0001134 .0004041 -0.28 0.783 -.0009865 .0007596

ves | .0150622 .0364293 0.41 0.686 -.0636385 .0937629

ves2 | -.0001446 .0003466 -0.42 0.683 -.0008934 .0006042

_cons | 23.57414 36.19652 0.65 0.526 -54.62369 101.772

------------------------------------------------------------------------------

Эта модель также не подходит, поскольку параметры при всех переменных не значимы согласно t-критерию Стьюдента.

Рассмотрим модель:

. reg sst lnud2 korm2 ves2

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 3, 16) = 10.39

Model | .031819188 3 .010606396 Prob > F = 0.0005

Residual | .016331762 16 .001020735 R-squared = 0.6608

-------------+------------------------------ Adj R-squared = 0.5972

Total | .04815095 19 .002534261 Root MSE = .03195

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud2 | -.0150021 .0079436 -1.89 0.077 -.0318418 .0018377

korm2 | .000028 .0000263 1.07 0.302 -.0000277 .0000838

ves2 | 2.49e-06 .0000227 0.11 0.914 -.0000457 .0000507

_cons | 1.258054 .4178871 3.01 0.008 .3721731 2.143935

------------------------------------------------------------------------------

И в этой модели параметры при переменных не значимы по t-критерию Стьюдента. Отбрасываем эту модель.

Воспользуемся процедурой пошагового отбора регрессоров при построении множественной регрессии. При этом из исходного набора объясняющих переменных будут включаться в число регрессоров в первую очередь те переменные, которые имеют больший уровень значимости. Вначале включим в набор переменных переменную , а затем переменную .

. sw reg sst lnud korm ves korm1 ves1 lnud2 korm2 ves2,pe(0.05)

begin with empty model

p = 0.0000 < 0.0500 adding lnud

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 1, 18) = 31.70

Model | .030711968 1 .030711968 Prob > F = 0.0000

Residual | .017438982 18 .000968832 R-squared = 0.6378

-------------+------------------------------ Adj R-squared = 0.6177

Total | .04815095 19 .002534261 Root MSE = .03113

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud | -.1672727 .0297095 -5.63 0.000 -.22969 -.1048553

_cons | 1.703191 .241499 7.05 0.000 1.19582 2.210561

------------------------------------------------------------------------------

В итоге получили модель . Это уравнение значимо согласно F-критерию Фишера, и параметр при переменной lnud и константа значимы по t-критерию Стьюдента. 63,78 % суммы квадратов отклонений переменной sst от среднего значения объясняется переменными модели. А при увеличении удоя молока на 2,72 % себестоимость снижается на 0,17 %.

. sw reg sst lnud1 korm ves korm1 ves1 lnud2 korm2 ves2,pe(0.05)

begin with empty model

p = 0.0000 < 0.0500 adding lnud1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 1, 18) = 32.04

Model | .030830369 1 .030830369 Prob > F = 0.0000

Residual | .017320581 18 .000962254 R-squared = 0.6403

-------------+------------------------------ Adj R-squared = 0.6203

Total | .04815095 19 .002534261 Root MSE = .03102

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 11.2229 1.982717 5.66 0.000 7.057366 15.38843

_cons | -1.038311 .2443161 -4.25 0.000 -1.5516 -.5250216

------------------------------------------------------------------------------

Получили модель . Это уравнение значимо по F-критерию Фишера, и параметр при переменной lnud1 и константа значимы по t-критерию Стьюдента. 64,03 % суммы квадратов отклонений переменной sst от среднего значения объясняется переменными модели.

Сделаем выбор между этими двумя моделями. Представим критерии выбора модели в следующей таблице:

МодельКритерий
R-квадратСкорректированный R-квадратАкейкаШварцаσост
0.63780.6177-13,9896-6,894990,0302959
0.64030.6203-14,0032-6,901800,03019289

Из данной таблицы видно, что по всем критериям гиперболическая модель лучше линейной.

Проверим регрессию на автокорреляцию остатков:

. regdw sst lnud1,t(lnud1) force

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 1, 18) = 32.04

Model | .030830369 1 .030830369 Prob > F = 0.0000

Residual | .017320581 18 .000962254 R-squared = 0.6403

-------------+------------------------------ Adj R-squared = 0.6203

Total | .04815095 19 .002534261 Root MSE = .03102

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 11.2229 1.982717 5.66 0.000 7.057366 15.38843

_cons | -1.038311 .2443161 -4.25 0.000 -1.5516 -.5250216

------------------------------------------------------------------------------

Durbin-Watson Statistic = 2.460766

Проверка на автокорреляцию дает удовлетворительное значение статистики Дарбина-Уотсона 2,46 (автокорреляция отсутствует), так как , где (табличное значение). Это означает, что ошибки независимы между собой.

Построим график остатков регрессии от оцененной зависимой переменной:

. fit sst lnud1

Source | SS df MS Number of obs = 20

-------------+------------------------------ F( 1, 18) = 32.04

Model | .030830369 1 .030830369 Prob > F = 0.0000

Residual | .017320581 18 .000962254 R-squared = 0.6403

-------------+------------------------------ Adj R-squared = 0.6203

Total | .04815095 19 .002534261 Root MSE = .03102

------------------------------------------------------------------------------

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 11.2229 1.982717 5.66 0.000 7.057366 15.38843

_cons | -1.038311 .2443161 -4.25 0.000 -1.5516 -.5250216

------------------------------------------------------------------------------

. rvfplot, c(m)

Можно предположить наличие гетероскедастичноти, поскольку разброс значений остатков увеличивается с ростом значений себестоимости молока. Проверим этот факт с помощью теста Бреуша-Пагана:

. hettest

Cook-Weisberg test for heteroskedasticity using fitted values of sst

Ho: Constant variance

chi2(1) = 0.01

Prob > chi2 = 0.9328

Тест Бреуша-Пагана подтверждает наличие гетероскедастичности, потому что гипотеза о постоянстве дисперсий отклоняется.

Скорректируем стандартные ошибки по Навье-Весту, учитывая гетероскедастичность:

. newey sst lnud1, lag(0) force

Regression with Newey-West standard errors Number of obs = 20

maximum lag : 0 F( 1, 18) = 60.26

Prob > F = 0.0000

------------------------------------------------------------------------------

| Newey-West

sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnud1 | 11.2229 1.445712 7.76 0.000 8.18557 14.26023

_cons | -1.038311 .1784612 -5.82 0.000 -1.413244 -.6633776

------------------------------------------------------------------------------

Изменились доверительные интервалы для параметров переменных модели.

Итак, имеем модель: ,

(sst-себестоимость молока за 1 кг, руб) ;

lnud-логарифм удоя молока на среднегодовую корову, кг.

Себестоимость не зависит ни от расхода кормов на 1 корову, ни от удельного веса чистопородных коров в стаде. Выявлена обратная пропорциональность между себестоимостью молока и логарифмом удоя молока, а следовательно, и просто удоем молока. Стандартная ошибка переменной составляет 1.4457, а константы – 0.1785. Доверительный интервал   для    переменной –   [ 8.1856 ; 14.2602 ], для константы  –  [ -1.4132 ; -0.6634 ].

Рассчитаем прогнозные значения показателей, когда уровень факторных показателей на 30 % превышает средние величины исходных данных. Средний показатель удоя молока на среднегодовую корову равен 3476.5 кг. Превышение этого значения на 30 % составляет 4519.45 кг. Прологарифмируя, получим: lnud = 8.416. Тогда, согласно модели, себестоимость при таком значении удоя молока составит 0,296 руб. за 1 кг.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно