Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Неединственность преобразований Лоренца.

Тип Реферат
Предмет Математика
Просмотров
1602
Размер файла
14 б
Поделиться

Ознакомительный фрагмент работы:

Неединственность преобразований Лоренца.

Не единственность преобразований Лоренца.

Рассмотрим пространство Минковского и изотропный конус. Рассмотрим две точки М и М’ на поверхности изотропного конуса. Попробуем определить: есть ли единственность перевода точки М в точку М’, то есть, только ли известные преобразования Лоренца переводят М в М’.

Преобразования должны быть ортогональны, чтобы преобразования входили в ортогональную группу, для которой существует инвариант двух точек, то есть интервал, что дает нам право задать метрическую форму.

Рассматриваем, как получают условие ортогональности: оно начинается с рассмотрения вырожденности канонической квадратичной формы. Форма должна быть не вырожденной, тогда используется известная формула. Так как мы рассматриваем поверхность изотропного конуса, то форма у нас тождественный ноль, а значит вырождена. Это означает, что наша форма должна иметь на одну координату меньше, чем размерность пространства. (Все это общеизвестные факты, см. литературу.) Если точку М определяют координаты x,y,z,t, а точку М’ определяют координаты x’,y’,z’,t’, тогда преобразования Лоренца (не будем расписывать всем известные коэффициенты) выглядят:

(1) t=At’+Bx’, x=Dt’+Ex’ , y=y’, z= z’,

Чтобы форма не была тождественно равна нулю, и чтобы в ней было не четыре координаты (так как размерность пространства четыре) нам необходимо зафиксировать, к примеру, координату z=z^, z’=z^’. Разделим форму для x,y,z,t на z^, а форму для x’,y’,z’,t’ на z^’, а затем заменим все координаты:

(2) T=t/z^, X= x/z^, Y=y/z^ и T’=t’/z^’, X’=x’/z^’, Y’=y’/z^’,

ясно, что мы получили квадратичные формы в каноническом виде отличные от нуля (не будем их расписывать).

Подставим в (2) формулы (1), тогда (в трехмерном пространстве, на котором заданы координаты T,X,Y):

(3) T= AT’+BX’, X= DT’+EX’, Y=Y’,

уравнения (3) в точности совпадают с известными преобразованиями Лоренца, а значит ортогональны. Ч.т.д.

Но мы видим, что при введении произвольного коэффициента N для всех координат одновременно изменений в уравнениях (3) не произойдет, действительно, если

(4) t=N(At’+Bx’), x=N(Dt’+Ex’) , y=Ny’, z= Nz’,

то уравнения (3) не изменятся, при этом сохранится их ортогональность, но уравнения (1) не будут единственными. Интервал, записанный в координатах (4) не изменяется, так как он - тождественный ноль, исследование на ортогональность по известным формулам не проводится, так как форма вырождена, но после того, как придем к не вырожденной форме (в трехмерном пространстве, на котором заданы координаты T,X,Y), преобразования координат будут ортогональны. Надо отметить это возможно только на поверхности изотропного конуса.

Литература: 1) Н.В. Ефимов «Высшая геометрия».

2) Г.Е. Шилов «Математический анализ. Конечномерные линейные пространства».

12 мая 2008 год Игорь Елкин

Аннотация к статье «Преобразования Лоренца не единственны»:

Основа физики – геометрия, так как только геометрия определяет способы задания координат (это около 400 страниц высшей математики, туда входит проективная геометрия и теория групп). Вывод из этих теорий однозначен – преобразования координат единственны и это преобразования Лоренца, но это внутри изотропного конуса. Если рассмотреть поверхность изотропного конуса, то можно доказать на этом подпространстве, что эти преобразования не обладают единственностью. Самое интересное, что любые измерения расстояния (в трехмерном евклидовом пространстве) можно свести к измерению расстояния светом. Это означает, что мы все рассматриваем на поверхности изотропного конуса. Это уже означает, что все преобразования координат мы обязаны рассматривать на поверхности изотропного конуса, а они не обладают единственностью.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно