Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Доказательство великой теоремы Ферма для четных показателей степени

Тип Реферат
Предмет Математика
Просмотров
1636
Размер файла
35 б
Поделиться

Ознакомительный фрагмент работы:

Доказательство великой теоремы Ферма для четных показателей степени

Файл: FERMA-2mPF-for

© Н. М. Козий, 2007

Авторские права защищены свидетельствами Украины

№ 27312 и № 28607

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ

Великая теорема Ферма формулируется следующим образом: диофантово уравнение(http://soluvel.okis.ru/evrika.html):

Аn+ Вn= Сn /1/

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:

Аn= Сnn /2/

Пусть показатель степени n=2m. Тогда уравнение /2/ запишется следующим образом:

А2m= С2m –В2m/3/

Для доказательства великой теоремы Ферма используем алгебраическое доказательство теоремы Пифагора.

АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА (Решение уравнения теоремы Пифагора в целых числах)

Теорема Пифагора формулируется следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

С22 + В2, /4/

где: С – гипотенуза; А и В – катеты.

Существуют прямоугольные треугольники, у которых стороны А, В и С выражаются целыми числами. Такие числа называются пифагоровыми.

Рассматривая уравнение теоремы Пифагора как алгебраическое уравнение, докажем, что существует бесконечное количество прямоугольных треугольников, в которых их стороны выражаются целыми числами или, что одно и тоже, уравнение /4/ имеет бесконечное количество решений в целых числах.

Суть теоремы Пифагора не изменится, если уравнение /4/ запишем следующим образом:

А2 = С2 –В2 /5/

Для доказательства теоремы Пифагора методами элементарной алгебры используем два известные в математике метода решения алгебраических уравнений: метод решения параметрических уравнений и метод замены переменных.

Уравнение /5/ рассматриваем как параметрическое уравнение с параметром Aи переменными Bи С. Уравнение /5/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:

А2=(C-B)∙(C+B) /6/

Используя метод замены переменных, обозначим:

C-B=M /7/

Из уравнения /7/ имеем:

C=B+M /8/

Из уравнений /6/, /7/ и /8/ имеем:

А2 =M∙ (B+M+B)=M∙(2B+M) = 2BM+M2 /9/

Из уравнения /9/ имеем:

А2- M2=2BM /10/

Отсюда: B = /11/

Из уравнений /8/ и /11/ имеем:

C= /12/

Таким образом: B = /13/

C/14/

Из уравнений /11/ и /12/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2на число M, т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2.

Числа А и M должны иметь одинаковую четность.

По формулам /13/ и /14/ определяются числа BиCкак переменные, зависящие от значения числа А как параметра и значения числа M.

Из изложенного следует: 1. Квадрат простого числа Aравен разности квадратов одной пары чисел BиC (приM=1). 2. Квадрат составного числа Aравен разности квадратов одной пары или нескольких пар чисел BиC. 3. Квадрат числа Amравен разности квадратов нескольких пар чисел. 4. Все числа A> 2 являются пифагоровыми.

Таким образом, существует бесконечное количество троек пифагоровых чисел А, В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А, В и С выражаются целыми числами.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 1

Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом:

А2m= С2m –В2m =(Сm –Вm)∙(Сmm) /15/

Тогда в соответствии с уравнениями /13/ и /14/ запишем:

Bm=/16/

Cm/17/

Из уравнений /16/ и /17/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2mна число M, т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2m.Следовательно, число A2m должно быть равно:

A2m = M· D, /18/

где D – целое число.

Тогда : Bm=/19/

А число Cmс учетом уравнения /8/ равно:

Cm = Bm + M=/20/

Тогда из уравнений /19/ и /20/ следует:

B= /21/

C/22/

Если допустить, что В – целое число, то из уравнения /22/ следует, что число С не может быть целым числом, так как сомножители в скобках в подкоренных выражениях в уравнениях /21/ и /22/ отличаются всего на 1.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 2

Выше в доказательстве теоремы Пифагора доказано, что все натуральные числа являются пифагоровыми. Следовательно, все натуральные числа распределяются на тройки пифагоровых чисел и, следовательно, все тройки пифагоровых чисел удовлетворяют уравнению /4/:

С22 + В2 /23/

Пифагоровы числа (А, В, С) могут быть истолкованы как длины сторон прямоугольного треугольника, а их квадраты могут быть истолкованы как площади квадратов, построенных на гипотенузе и катетах этого треугольника. Умножив приведенное уравнение на С, получим:

С32∙ С+ В2· С /24/

Из уравнения /24/ следует, что объем куба раскладывается на два объема двух параллелепипедов. Поскольку очевидно, что в уравнении /23/ А<Cи В<C, то из уравнения/24/ следует:

С33 + В3/25/

На всем множестве троек пифагоровых чисел ( а все натуральные числа образуют тройки пифагоровых чисел) при показателе степени n=3 не может быть ни одного решения уравнения /1/:

Аn+ Вn= Сn

Следовательно, на всем множестве натуральных чисел невозможно куб разложить на два куба.

Умножив уравнение /23/ на С2, получим:

С2∙С22·С2 + В2∙С2 /26/

Все члены этого уравнения представляют собой объемы параллелепипедов:

параллелепипед С2∙С2имеет в основании квадрат со стороной С и высоту С2;

параллелепипед А2∙С2имеет в основании квадрат со стороной А и высоту С2;

параллелепипед В2∙С2 имеет в основании квадрат со стороной В и высоту С2.

Следовательно, в соответствии с уравнением /26/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов.

Поскольку, как показано выше, А<Cи В<C, то из уравнения/26/ следует:

С44 + В4/27/

В общем случае уравнение /26/ можно записать следующим образом:

С2∙Сn-22·Сn-2 + В2∙Сn-2 /28/

Сn2·Сn-2 + В2∙Сn-2 /29/

Следовательно, в соответствии с уравнениями /28/ и /29/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов. Поскольку, как показано выше, А<Cи В<C, то из уравнения/29/ следует:

Сnn+ Вn/30/

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при четных показателях степени.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно