Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение систем дифференциальных уравнений

Тип Реферат
Предмет Математика
Просмотров
762
Размер файла
82 б
Поделиться

Ознакомительный фрагмент работы:

Решение систем дифференциальных уравнений

Реферат

на тему:

"Решение систем дифференциальных уравнений"

1.Дифференциальная линейная алгебра

С собственными значениями и векторами матрицы приходится иметь дело в задачах, связанных с решением систем линейных дифференциальных уравнений и исследованием устойчивости этих решений. Дифференциальная векторно-матричная алгебра включает в себя операции интегрирования и дифференцирования, которые во множестве случаев в своей нотации напоминают соответствующие операции обычного дифференциального исчисления. Производная по скалярной переменной и интеграл от вектора и матрицы в заданных пределах изменения скалярной переменной определены так:

Производные от векторных и векторно-матричных выражений определяются следующими правилами:

,

,


,

,

.

2. Векторное решение однородного уравнения

Пусть система линейных однородных дифференциальных уравнений задана в векторной форме:

Если уравнение записано в форме однородного дифференциального уравнения n-го порядка и его характеристический многочлен имеет различные корни, то общее решение представляется суммой n частных решений с экспоненциальными базовыми функциями:

,

где – константы, определяемые начальными условиями.

Можно предположить, что векторное уравнение, представляющее общее решение, имеет аналогичную форму

.


Для выяснения вопроса, что есть в таком представлении и , подставим частное решение в уравнение:

Отсюда видно, что будет частным решением, если будут собственным значением и собственным вектором матрицы A.

Таким образом, если матрица A имеет собственные значения и векторы , k=1,2,…, n, то общее решение однородного векторного уравнения после ряда эквивалентных преобразований предстанет в следующем виде:

.

Используя значение решения при t=0, находим . Таким образом, общее решение однородного векторного уравнения имеет следующий вид: .

Матричная экспонента выражается через проекторы и собственные значения матрицы по формулам спектрального разложения:

.

После подстановки X в решение вместо экспоненты получим:

.


В случаях, когда собственные значения и векторы найти не удается, матричную функцию можно разложить в ряд по степеням матрицы:

,

что позволяет численно получать многомерный переходной процесс, если ряд сходится.

Матричный ряд сходится, если существует предел последовательности частичных сумм. Достаточным условием является сходимость ряда из норм членов степенного матричного ряда. Используя, например, признак сходимости Даламбера ряд, представляющий матричную экспоненту, сходится, если существует и меньше единицы предел отношения

,

где R – радиус сходимости.

Объем вычислительной работы при оцифровке многомерного переходного процесса существенно зависит от числа членов в матричном ряде. Для повышения скорости сходимости применяют различные аппроксимации этого ряда. В частности, для экспоненты широко используются аппроксимации отрезков ряда дробно-рациональными функциями Падэ вида:

.

Так, матричная экспонента для трех и четырех членов имеет вид:


В свете приведенных разложений матричной экспоненты общее решение линейного векторно-матричного дифференциального уравнения приближенно можно вычислить по формуле:

.

3. Решение неоднородных дифференциальных уравнений

Познакомившись с общим подходом к построению решений линейных векторных дифференциальных уравнений, покажем теперь, как получаются решения неоднородных уравнений.

Представим исходное уравнение с неоднородностью, локализованной в правой части уравнения, и умножим обе части уравнения на матричную экспоненту :

.

Обращаясь к правилам дифференцирования векторно-матричных выражений, приведенных выше, несложно заметить, что слева от знака равенства находится производная от произведения матричной экспоненты на вектор y:

.


Сделаем соответствующую замену и проинтегрируем левую и правую части по независимой переменной t:

.

Умножая слева обе части равенства на матрицу , получим общее решение неоднородного дифференциального уравнения:

.

Формула общего решения в своей нотации точно соответствует случаю скалярного уравнения. При невозможности аналитического решения переходный процесс можно вычислить по точкам, заменив непрерывное время дискретным с шагом , где R – радиус сходимости степенного матричного ряда с матрицей :

.

В интеграле можно заменить независимую переменную на дискретную с тем же шагом, что и при разложении экспоненты: , тогда, применяя метод интегрирования по правилу прямоугольников и обозначая матричную экспоненту на k-том шаге через , получим

.


Удобно из формулы вычисления дискретных значений векторного переходного процесса получить рекуррентную формулу. Этого можно добиться, если найти в выражении для часть, которую можно заменить значением :

Повышения точности вычисления переходного процесса достигают за счет замены интеграла квадратурами более высокого порядка, например, первого – формула трапеций, или второго – формула парабол (Симпсона).

Использование формулы трапеций приводит после соответствующих преобразований к следующей рекуррентной формуле:

Если использовать формулу Симпсона, то рекуррентная формула для расчета переходного процесса от точки к точке будет такой:

В приведенных рекуррентных формулах матричные экспоненты имеют следующий вид:

.

4.Примеры численного решения векторно-матричных уравнений

В качестве примера построим переходный процесс для системы уравнений:

.

Эта система может быть представлена дифференциальным уравнением второго порядка относительно переменной :

,

или относительно переменной :

.

Характеристическое уравнение имеет два комплексных корня: . Общее решение этих уравнений будет:

,

где – постоянные, которые вычисляются по заданным начальным условиям путем решения системы уравнений:


Несложные преобразования приводят к следующим точным решениям этого уравнения для двух различных наборов начальных условий:

Получим такое же аналитическое решение векторного переходного процесса в форме экспоненциальной функции, используя спектральное разложение матрицы по собственным значениям.

Характеристический полином заданной матрицы имеет вид:

.

Собственные значения матрицы (корни характеристического уравнения) и собственные векторы равны:

Проекторы находим матричным произведением левых и правых собственных векторов. Для этого обратим матрицу и в качестве левых собственных векторов возьмем ее строки:


Векторное аналитическое решение имеет вид:

Решение совпадает с точным решением уравнений второго порядка.

Для численного построения векторного переходного процесса по заданному векторно-матричному уравнению с использованием Падэ-аппроксимации матричной экспоненты дробно-рациональными выражениями первого, второго и третьего порядков, вычислим сначала эти аппроксимирующие матрицы:


Вектор приближенного решения вычислим по рекуррентной формуле, в которую, для демонстрации влияния на точность результата, поочередно подставим каждое из трех приведенных выше приближений к матричной экспоненте:

:

В таблице помещены численные значения переходных процессов, полученные для трех названных случаев аппроксимации матричной экспоненты вместе с точным аналитическим решением.

t

Аналитическое

решение

Аппроксимация

Падэ порядка 1

Аппроксимация

Падэ порядка 2

Аппроксимация

Падэ порядка 3

011111111
0.11.0660.34751.06700.34831.06600.34751.0660.3475
0.21.072-0.20231.0740-0.20181.0720-0.20231.072-0.2023
0.31.029-0.64341.0320-0.64401.0290-0.64341.029-0.6434
0.40.9478-0.97550.9513-0.97780.9478-0.97550.9478-0.9755
0.50.8380-1.2030.8420-1.2070.8380-1.2030.8380-1.203
0.60.7103-1.3350.7145-1.3410.7102-1.3350.7102-1.335
0.70.5737-1.3830.5779-1.3910.5737-1.3830.5737-1.383
0.80.4360-1.3600.4398-1.3690.4360-1.3600.4360-1.360
0.90.3035-1.2800.3068-1.2900.3035-1.2800.3035-1.280
1.00.1814-1.1560.1839-1.1670.1814-1.1560.1814-1.156

Из сопоставления результатов можно сделать заключение, что аппроксимация экспоненты дробно-рациональной матричной функцией второго порядка позволяет при прочих равных условиях получать решение с 5–6-ю достоверными десятичными знаками.

Численное решение неоднородного дифференциального уравнения в векторно-матричном представлении проведем с прежней однородной частью в уравнении, но применим рекуррентные формулы с интегрированием по методу прямоугольников, трапеций и парабол:

.

Матричная экспонента для рекуррентных формул в данном примере бралась в абсолютно точном аналитическом представлении, полученном для этой матрицы выше (числовое представление для h=0.1):

.

Аналитическое решение в векторно-матричной форме записи имеет следующий вид:

.


В таблице приведены результаты вычисления переходных процессов для векторно-матричного неоднородного дифференциального уравнения по формуле аналитического решения и трем рекуррентным выражениям, использующим различные квадратурные формулы интегрирования. Для заполнения таблицы с шагом 0.1 по третьей рекуррентной формуле второе значение (для t=0.1) было получено вычислением с шагом 0.05. Эти первые два значения использовались в качестве начальных значений двух рекуррентных процессов, вычислявших очередные значения с шагом 0.2.

t

Точное решение

Интегрирование по формуле прямоугольниковИнтегрирование по формуле трапецийИнтегрирование по формуле парабол
011111111
0.11.165760.3288721.164220.3025691.165140.3300311.165760.328872
0.21.26681-0.2713281.26234-0.3188511.26567-0.2690621.26680-0.271346
0.31.31004-0.7858281.30176-0.8496211.30849-0.7825541.31125-0.802579
0.41.30354-1.206041.29100-1.281471.30167-1.201891.30354-1.20605
0.51.25599-1.528861.23917-1.611781.25389-1.523991.25944-1.55740
0.61.17619-1.755791.15542-1.842571.17395-1.750391.17618-1.75580
0.71.07265-1.892091.04854-1.979731.07033-1.886331.07991-1.92961
0.80.953246-1.945850.926640-2.031930.950907-1.939910.953243-1.94586
0.90.825009-1.927130.796891-2.009860.822699-1.921200.837584-1.97248
1.00.693974-1.847220.665412-1.925340.691726-1.841450.693977-1.84722

Аналогичные формулы построения вычислительных процедур могут быть выведены для уравнений с переменными коэффициентами и нелинейных уравнений. Однако обеспечение устойчивости и точности построения переходных процессов в таких случаях решается для каждой конкретной задачи отдельно.

Литература

1. Бахвалов И.В. Численные методы. БИНОМ, 2008. – 636c.

2. Измаилов А.Ф., Солодов М.В. Численные методы оптимизации. Издательство: ФИЗМАТЛИТ, 2003. – 304c.

3. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. – М.: ФИЗМАТЛИТ, 2001. – 608 с.

4. Мудров А.Е. Численные методы для ПЭВМ на языках Паскаль, Фортран и Бейсик. МП «Раско», Томск, 1991.

5. Пантелеев А.В., Киреев В.И., Пантелеев В.И., Киреев А.В. Численные методы в примерах и задачах. М: Высшая школа, 2004. – 480c.

6. Шевцов Г.С., Крюкова О.Г., Мызникова Б.И. Численные методы линейной алгебры. Учебное пособие. Издательство: ИНФРА-М, 2008.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно