Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Итерационные методы решения систем линейных алгебраических уравнений

Тип Реферат
Предмет Математика
Просмотров
802
Размер файла
49 б
Поделиться

Ознакомительный фрагмент работы:

Итерационные методы решения систем линейных алгебраических уравнений

Введение

Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ):

1. Метод Якоби (метод итераций).

2. Метод Холецкого.

3. Метод верхней релаксации.

Также данная курсовая работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования BorlandC++ Builder 6.

Описание метода

Метод решения задачи называют итерационным, если в результате получают бесконечную последовательность приближений к решению. Основное достоинство итерационных методов состоит в том, что точность искомого решения задается. Число итераций, которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов.

Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Примером обычных итерационных методов служат: метод итераций (метод Якоби), метод Зейделя, метод верхних релаксаций.

Начнем с метода итераций или как его ещё называют метода Якоби.

Существует сиcтема A·x = f (1), где матрица A = [aij] (i, j = 1, 2, …m) имеет обратную матрицу; x = (x1, x2, x3,… xm) – вектор неизвестных, f – вектор свободных членов. Систему (1) нужно преобразовать к следующему виду: (2) i=1, 2,…, m, где , , при этом aii0.

Значение суммы считается равным 0, если верхний предел суммирования меньше нижнего. Тогда при i=1 уравнение имеет вид: (3). В методе Якоби исходят из записи системы в виде (2), итерации при этом определяют следующим образом: , (n=0, 1, …, n0, i=1, 2, …, m) (4).

Начальные значения – (i=0, 1, …, m) задаются произвольно (в программе мы это проделываем, вводя функцию по генерации случайных чисел – «random»). Окончание итерационного процесса определяют либо заданием максимального числа итераций n0, либо следующим условием: , где >0. В качестве нулевого приближения в системе (4) примем.

Если последовательность приближений x1(0), x2(0),…, xm(0), x1(1), x2(1),…, xm(1),…, x1(k), x2(k),…, xm(k) имеет предел , , то этот предел является решением системы (2).

Достаточным условием сходимости решения системы (1) является то, что матрица A является матрицей с преобладающими диагональными элементами, то есть , i=1, 2, …, m.

Теперь рассмотрим второй итерационный метод – метод Зейделя, который является модификацией метода Якоби. Основная его идея заключается в том, что при вычислении (k+1) – го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения (x1 x2,…, xi-1).

Пусть дана приведенная линейная система: (i = 1, 2, …n) (5). Выбираются произвольно начальные приближения корней x1(0), x2(0),…, xn(0), чтобы они в какой-то мере соответствовали неизвестным x1, x2, x3,…, xn.

Предполагается, что k-е приближение корней известно, тогда в соответствии с идеей метода строится (k+1) – е приближение по следующим формулам:

k=0,1,2,... (6)


Если выполняется достаточное условие сходимости для системы (5) – по строкам, то в методе Зейделя выгодно расположить уравнения (6) так, чтобы первое уравнение системы имело наименьшую сумму модулей коэффициентов: .

Теперь рассмотри 3 метод – метод верхних релаксаций.

Метод верхней релаксации – это есть метод Зейделя с заданным числовым параметром w.

Одним из наиболее распространенных одношаговых методов является метод верхних релаксаций, который имеет следующий вид (7), где w заданный числовой параметр (0<w<2). Изменяя w можно получать различную скорость сходимости итерационного процесса. Этот параметр выбирается таким образом, чтобы на каждом шаге итерационного процесса уменьшалась величина, характеризующая близость полученного решения к искомому решению системы.

Достоинством итерационного метода верхних релаксаций является то, что при его реализации программным путем алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.

Для получения расчетных формул (7) перепишем в виде: или в компонентной записи получим (8) – это есть основная вычислительная формула.

В выражение (8) ивходят одинаковым образом => при вычислениях они могут быть записаны в один и тот же массив. При реализации метода верхних релаксаций используется следующая форма записи алгоритма вычислений .

Действительно, при последовательном нахождении элемента (i+10 итерации) на каждом шаге будут использоваться найденные ранее значения, которые при k<j соответствуют i+1 итерации, а при k<j-i итерации.

Применение метода к конкретной задаче (анализ)

Составляя задачи на языке программирования BorlandC++ Builder 6 для реализации точных методов решения СЛАУ я учитывал разное количество уравнений в системе (размерность матрицы задавал равным nxn). Но для проверки результатов использовал систему уравнений:

Вообще говоря, процесс Зейделя сходится быстрее, чем метод Якоби. Бывает, что процесс Зейделя сходится, когда простая итерация расходится и т.п. Правда, бывает и наоборот. Во всяком случае, достаточные условия сходимости для метода Якоби достаточны и для сходимости метода Зейделя. Реализовав программы из полученного ответа я увидел, что процесс Зейделя сходится быстрее. Это видно по количеству итераций полученных в программе при приближенной точности =0,000001. Если для метода Якоби они составляют 16, то для метода Зейделя они составляют 9.

Также рассматривая метод верхней релаксации и сравнивая его с двумя другими методами видно, что в методе верхней релаксации количество итераций зависит от заданного числового параметра w. Задавая w=1, количествоитераций равно 9, уменьшая значение параметра от 1 количество итераций начинает расти, в свою очередь увеличивая параметр количество итераций тоже начинает расти.

Приведем таблицу показывающих количество итераций (k) при разных значениях параметра w:

w0.10.40.80.911.11.21.31.71.9
k1615141391314151616

Из всего этого можно сделать вывод, что итерационные методы сходятся быстрее, чем точные методы, о чем свидетельствуют как быстрое уменьшение невязок, так и уменьшение изменений неизвестных.

Листинг программы

// –

#include <vcl.h>

#pragma hdrstop

#include «Unit1.h»

// –

#pragma package (smart_init)

#pragma resource «*.dfm»

#include<math.h>

#include<stdlib.h>

TForm1 *Form1;

int n=0, prov=0, k=0;

const x=100;

float A[x] [x], B[x] [x];

float C[x], Y[x];

float *X;

bool fl1=false;

float e;

float v_sh;

// –

__fastcall TForm1:TForm1 (TComponent* Owner)

: TForm(Owner)

{

}

// –

void __fastcall TForm1: ButtonOkClick (TObject *Sender)

{

Memo1->Lines->Clear();

k=0;

TryStrToInt (Edit1->Text, n);

if (n>1)

{

StringGrid1->Enabled=true;

StringGrid1->RowCount=n;

StringGrid1->ColCount=n+1;

ButtonClear->Enabled=true;

ButtonOk->Enabled=false;

StringGrid1->Color=clWindow;

ButtonYakobi->Enabled=true;

ButtonZeydel->Enabled=true;

ButtonRelax->Enabled=true;

X=new float[n];

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

A[i] [j]=NULL;

}

X[i]=NULL;

}

}

else

{

ShowMessage («Число должно быть вещественного типа!»);

}

}

// –

void __fastcall TForm1: ButtonClearClick (TObject *Sender)

{

StringGrid1->Enabled=false;

StringGrid1->RowCount=0;

StringGrid1->ColCount=0;

ButtonClear->Enabled=false;

ButtonOk->Enabled=true;

StringGrid1->Color=clBtnFace;

ButtonYakobi->Enabled=false;

}

// –

void __fastcall TForm1: ButtonYakobiClick (TObject *Sender)

{

//TryStrToFloat (Edit2->Text, e);

Memo1->Lines->Clear();

e=StrToFloat (Edit2->Text);

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

TryStrToFloat (StringGrid1->Cells[j] [i], A[i] [j]);

}

}

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

if (A[i] [j]==NULL)

{

ShowMessage («Ошибка! Есть пустые ячейки!»);

fl1=true;

i=n;

break;

}

}

}

if(! fl1) {

for (int i=0; i<n; i++)

{

for (int j=0; j<n; j++)

{

if (i!=j) B[i] [j]=(-1)*A[i] [j]/A[i] [i];

else

{

B[i] [j]=0;

C[i]=A[i] [n]/A[i] [i];

}

}

}

for (int i=0; i<n; i++) X[i]=C[i];

float s=0;

k=0;

do

{

prov=0;

for (int i=0; i<n; i++)

{

Y[i]=X[i];

for (int j=0; j<n; j++)

{

s+=B[i] [j]*X[i];

}

X[i]=s+C[i];

s=0;

}

for (int i=0; i<n; i++)

{

if (fabs(X[i] – Y[i])<e) prov++;

}

k++;

}

while (prov!=n);

Memo1->Lines->Add (» МЕТОДЯКОБИ»);

Memo1->Lines->Add(«»);

String p=»»;

Memo1->Lines->Add («Промежуточная матрица:»);

for (int i=0; i<n; i++)

{

p=»»;

for (int j=0; j<n+1; j++)

{

p+=FloatToStr (B[i] [j])+»»;

}

Memo1->Lines->Add(p);

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («КорниСЛАУравны:»);

for (int i=0; i<n; i++)

{

if (X[i]!=NULL)

{

Memo1->Lines->Add («x»+IntToStr (i+1)+» = «+FloatToStr (X[i]));

}

else

{

Memo1->Lines->Add («Неткорней!»);

break;

}

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Количествоитераций = «+FloatToStr(k));

}

}

// –

void __fastcall TForm1: ButtonExitClick (TObject *Sender)

{

Close();

}

// –

void __fastcall TForm1: RadioButton2Click (TObject *Sender)

{

ButtonYakobi->Visible=false;

ButtonZeydel->Visible=true;

ButtonRelax->Visible=false;

}

// –

void __fastcall TForm1: RadioButton1Click (TObject *Sender)

{

ButtonYakobi->Visible=true;

ButtonZeydel->Visible=false;

ButtonRelax->Visible=false;

}

// –

void __fastcall TForm1: ButtonZeydelClick (TObject *Sender)

{

Memo1->Lines->Clear();

k=0;

e=StrToFloat (Edit2->Text);

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

TryStrToFloat (StringGrid1->Cells[j] [i], A[i] [j]);

}

}

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

if (A[i] [j]==NULL)

{

ShowMessage («Ошибка! Есть пустые ячейки!»);

fl1=true;

i=n;

break;

}

}

}

if(! fl1) {

for (int i=0; i<n; i++)

{

for (int j=0; j<n; j++)

{

if (i!=j) B[i] [j]=(-1)*A[i] [j]/A[i] [i];

else

{

B[i] [j]=0;

C[i]=A[i] [n]/A[i] [i];

}

}

}

for (int i=0; i<n; i++)

{

X[i]=rand();

}

k=0;

float s=0;

for (int i=0; i<n; i++)

{

for (int j=0; j<n; j++)

{

s+=B[i] [j];

}

Y[i]=s;

s=0;

}

s=Y[0];

for (int i=1; i<n; i++)

{

if (s<Y[i]) s=Y[i];

Y[i]=0;

}

if (s<1)

{

do

{

s=0;

for (int i=0; i<n; i++)

{

Y[i]=X[i];

}

for (int i=0; i<n; i++)

{

s=C[i];

for (int j=0; j<n; j++)

{

s+=X[j]*B[i] [j];

}

X[i]=s;

}

prov=0;

for (int i=0; i<n; i++)

{

if (fabs(X[i] – Y[i])<e) prov++;

}

k++;

}

while (prov!=n);

Memo1->Lines->Add (» МЕТОДЗЕЙДЕЛЯ»);

Memo1->Lines->Add(«»);

String p=»»;

Memo1->Lines->Add («Промежуточная матрица:»);

for (int i=0; i<n; i++)

{

p=»»;

for (int j=0; j<n+1; j++)

{

p+=FloatToStr (B[i] [j])+»»;

}

Memo1->Lines->Add(p);

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («КорниСЛАУравны:»);

for (int i=0; i<n; i++)

{

if (X[i]!=NULL)

{

Memo1->Lines->Add («x»+IntToStr (i+1)+» = «+FloatToStr (X[i]));

}

else

{

Memo1->Lines->Add («Неткорней!»);

break;

}

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Количествоитераций = «+FloatToStr(k));

}

else {Memo1->Lines->Add («СЛАУ является не сходимой!»);}

}

}

// –

void __fastcall TForm1: RadioButton3Click (TObject *Sender)

{

ButtonYakobi->Visible=false;

ButtonZeydel->Visible=false;

ButtonRelax->Visible=true;

}

// –

void __fastcall TForm1: ButtonRelaxClick (TObject *Sender)

{

//TryStrToFloat (Edit2->Text, e);

v_sh=StrToFloat (Edit3->Text);

e=StrToFloat (Edit2->Text);

Memo1->Lines->Clear();

k=0;

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

TryStrToFloat (StringGrid1->Cells[j] [i], A[i] [j]);

}

}

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

if (A[i] [j]==NULL)

{

ShowMessage («Ошибка! Есть пустые ячейки!»);

fl1=true;

i=n;

break;

}

}

}

if(! fl1) {

float vsp=0, alp=0;

for (int i=0; i<n; i++)

{

for (int j=0; j<n; j++)

{

if (i!=j) B[i] [j]=(-1)*A[i] [j]/A[i] [i];

else

{

B[i] [j]=0;

C[i]=A[i] [n]/A[i] [i];

}

}

}

float *sq_z=new float[n];

float *sq_y=new float[n];

for (int i=0; i<n; i++)

{

sq_z[i]=rand();

}

for (int i=0; i<n; i++) sq_y[i]=C[i];

for (int i=0; i<n; i++) X[i]=0;

vsp=C[0];

for (int j=0; j<n; j++)

{

vsp+=sq_z[j]*B[0] [j];

}

sq_z[0]=vsp;

for (int i=0; i<n; i++)

{

for (int j=0; j<n; j++)

{

vsp+=B[i] [j];

}

Y[i]=vsp;

vsp=0;

}

vsp=Y[0];

for (int i=1; i<n; i++)

{

if (vsp<Y[i]) vsp=Y[i];

Y[i]=0;

}

if (vsp<1)

{

do

{

for (int i=0; i<n; i++)

{

Y[i]=X[i];

}

for (int i=0; i<n; i++)

{

vsp=C[i];

for (int j=0; j<n; j++)

{

vsp+=sq_z[j]*B[i] [j];

alp+=B[i] [j]*sq_y[i];

}

sq_z[i]=vsp;

sq_y[i]=alp+C[i];

vsp=0;

alp=0;

X[i]=v_sh*sq_z[i]+(1-v_sh)*sq_y[i];

}

prov=0;

for (int i=0; i<n; i++)

{

if (fabs(X[i] – Y[i])<e) prov++;

}

k++;

}

while (prov!=n);

Memo1->Lines->Add (» МЕТОДВЕРХНЕЙРЕЛАКСАЦИИ»);

Memo1->Lines->Add(«»);

String p=»»;

Memo1->Lines->Add («Промежуточная матрица:»);

for (int i=0; i<n; i++)

{

p=»»;

for (int j=0; j<n+1; j++)

{

p+=FloatToStr (B[i] [j])+»»;

}

Memo1->Lines->Add(p);

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («КорниСЛАУравны:»);

for (int i=0; i<n; i++)

{

if (X[i]!=NULL)

{

Memo1->Lines->Add («x»+IntToStr (i+1)+» = «+FloatToStr (X[i]));

}

else

{

Memo1->Lines->Add («Неткорней!»);

break;

}

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Количествоитераций = «+FloatToStr(k));

}

else {Memo1->Lines->Add («СЛАУ является не сходимой!»);}

}

}

// –

Результаты расчета

МЕТОД ЯКОБИМЕТОД ЗЕЙДЕЛЯМЕТОД ВЕРХНЕЙ РЕЛАКСАЦИИ

Промежуточная матрица:

0 -0,100000001490 -0,100000001490 0

-0,200000002980 0 -0,100000001490 0

-0,200000002980 -0,200000002980 0 0

Корни СЛАУ равны:

x1 = 1

x2 = 1

x3 = 1,00000011920929

Количество итераций = 16

Промежуточная матрица:

0 -0,100000001490 -0,100000001490 0

-0,200000002980 0 -0,100000001490 0

-0,200000002980 -0,200000002980 0 0

Корни СЛАУ равны:

x1 = 1

x2 = 0,99999988079071

x3 = 0,999999940395355

Количество итераций = 9

Промежуточная матрица:

0 -0,100000001490 -0,100000001490 0

-0,200000002980 0 -0,100000001490 0

-0,200000002980 -0,200000002980 0 0

Корни СЛАУ равны:

x1 = 1,00000011920929

x2 = 0,99999988079071

x3 = 0,999999940395355

w=1

Количество итераций = 9


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно