это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Терема Ферма. Бесконечный спуск для нечётных показателей n.
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя nтем же способом бесконечного спуска Ферма, что и для n=4.
Ферма (потом Эйлер) доказывали эту теорему для частного случая n = 4 способом бесконечного спуска с помощью формул древних индусов: x= a- b, y=2ab, z= a+ b.
Другие формулы:x = + b, y = + a, z = + a + b (1).
В (1) a и bлюбые взаимно простые положительные целые числа, одно из них – чётное, другое – нечётное. Пусть a– чётное, b – нечётное: a=2c, b=d, откуда=2cd.
После подстановки значений a и b в (1) получим:
X = d(2c+d); Y= 2c(c+d); Z= 2c(c+d)+ d(2),
где c и dлюбые целые положительные числа;c,dи их суммывзаимно просты;
X,Y,Z– взаимно простые тройки решений уравнения Пифагора. Если определены и целы c и d, то определены и целы все три числа X,Y,Z.
Предположим, что уравнение Ферма x+ y= zимеет тройку целых положительных решений x,y,zпри нечётном целом положительном значении показателя n, n>2. Запишем это уравнение следующим образом:
(x)+ (y)= (z)(4).
Так как рассматривается возможность существования целых решений уравнений Ферма и (4) , то должно выполняться следующее условие:
x= X; y= Y; z= Z; где X,Y,Z из (2) (5).
Чтобы числаx,y,z были целыми, из всех трёх чисел X,Y,Z должны извлекаться целочисленные корни степени n(n – нечётное положительное целое число):
x == (); y == (); z =.
Для упрощения достаточно рассмотреть два целых числа и(n – нечётное):
== и = = .
Подкоренные выражения содержат сомножители не имеющие общих делителей, кроме 1, поэтому каждый сомножитель должен являться целым числом в степени n:
d = g; 2 c = h, следовательно, = ; = .
Так как x,– целые, x – по условию, а – из-за нечётн. n, то g+ h= k, где k – целое.
Тройка решений g,h,kудовлетворяет уравнению Ферма, но все три числа меньше числа x первой тройки решений, потому что наибольшее число kиз g,h,kменьше , так как =g, а <x, так как x=(). Число kзаведомо меньше числа z.
Повторим те же рассуждения для второй тройки решений g,h,k, начиная с (4):
(g)+ (h)= (k); g ==(); h ==(); k =.
= = и = = .
d = p; 2 c = q, следовательно, = ; = .
p+ q= r, где r – целое число. Все три числа p,q,rменьше числа из второй тройкирешений и r<k. Таким же образом получается 4-я тройка решений, 5-я и т.д. до .
При данных конечных целых положительных числахx,y,z не может существовать бес-конечной последовательности уменьшающихся целых положительных троек решений. Ряд натуральных чисел конечен. Отсюда целых положительных троек решений для целых положительных нечётных (и всех простых) значений показателя n (n>2) не существует.
Для чётных n=2mне кратных 4: (x)+(y)=(z), m– нечётное. Если нет целых троек решений для показателяm, то их нет и для 2m(это показал Эйлер). Для n=4 и n=4k (k=1,2,3…) уже доказано, что целых положительных троек решений не существует.
А. Ф. Горбатов
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!