Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Опыт применения критерия Сильвестра в некоторых задачах устойчивости консервативных систем

Тип Реферат
Предмет Математика
Просмотров
1270
Размер файла
0.96 Кб
Поделиться

Ознакомительный фрагмент работы:

Опыт применения критерия Сильвестра в некоторых задачах устойчивости консервативных систем

Реферат на тему

Опыт применения критерия Сильвестра в некоторых задачах устойчивости консервативных систем

Санкт-Петербург2010г.


Биография

Джеймс Джозеф Сильвестр (3 сентября 1814, Лондон — 15 марта, 1897, Оксфорд) — известный английский математик еврейского происхождения. Сильвестр начал изучать математику в Сент-Джон-колледже Кембриджского университета в 1831 году. Его учёба прерывалась длительными болезнями, но в итоге он занял второе место на выпускном экзамене по математике в 1837 году. Однако он не получил степени бакалавра, так как для этого требовалось подтвердить своё согласие с догматами англиканского вероисповедания, что Сильвестр отказался сделать. В 1841 году он получил степень бакалавра и магистра в Тринити-колледже в Дублине. Здесь евреям, как и католикам, разрешалось получать образование. В том же году он переехал в США чтобы стать профессором в Университете Вирджинии, но вскоре вернулся в Англию. В 1877 году Сильвестр снова переехал в Америку чтобы стать первым профессором математики в новом Университете Джона Хопкинса в Балтиморе. Его жалование составило 5000 долларов (довольно щедрое по тем временам), и он потребовал, чтобы его выплачивали золотом.В 1878 году он основал «Американский математический журнал» — второй в то время в США.В 1880 году Сильвестр был награжден Медалью Копли. В 1883 году он вернулся в Англию, чтобы стать главой кафедры геометрии в Оксфордском университете. Он руководил кафедрой до самой смерти, хотя в 1892 году университет назначил ему заместителя.

Именем Сильвестра названа бронзовая медаль (см. Медаль Сильвестра), вручаемая с 1901 года Королевским обществом за выдающиеся заслуги в математике.


Устойчивость равновесия консервативной системы с конечным числом степеней свободы

Установленное теоремой Лагранжа-Дирихле условие устойчивого равновесия системы с конечным числом степеней свободы заключается в том, что устойчивому равновесному положению соответствует минимум потенциальной энергии.

Для системы с конечным числом степеней свободы минимум потенциальной энергии определяется рядом условий. Эти условия обеспечивают соотношения между параметрами системы, при которых любому приращению обобщенных координат, отсчитываемых от положения равновесия, соответствует положительное приращение потенциальной энергии.

Потенциальная энергия консервативной системы с s степенями свободы определяется выражением:

На основании теоремы Лагранжа — Дирихле потенциальная энергия системы представляет собой положительную знакоопределенную форму.

Функцию называют знакоопределенной, если при любых значениях аргументов она сохраняет один и тот же знак, т. е. является или положительной или отрицательной.

Чтобы определить условия, при которых рассматриваемая квадратичная форма является определенно положительной, воспользуемся критерием Сильвестра о знакоопределенности квадратичной формы: для того чтобы квадратичная форма была определенно положительной, необходимо и достаточно, чтобы все главные миноры ее дискриминанта были положительны, т. е. выполнялись следующие условия:

Для потенциальной энергии системы:

С увеличением числа степеней свободы исследование устойчивости равновесия систем значительно усложняется.

Теорема Лагранжа — Дирихле дает критерий, позволяющий утверждать, что равновесное положение консервативной системы устойчиво, если ее потенциальная энергия имеет минимум. Однако по этой теореме нельзя определить, каково равновесие системы, если ее потенциальная энергия в равновесном положении не имеет минимума. В этих случаях применяют следующие теоремы Ляпунова о неустойчивости равновесия.

Теорема 1. Равновесное положение системы является положением неустойчивого равновесия, если потенциальная энергия системы в этом положении не имеет минимума; при этом отсутствие минимума определяется членами второго порядка малости, действительно входящими в разложение уравнения потенциальной энергии в ряд Маклорена по степеням малых приращений координат.

Теорема 2. Равновесное положение системы является положением неустойчивого равновесия, если потенциальная энергия системы в этом положении имеет максимум; при этом наличие максимума устанавливается членами наименее высокого порядка малости, действительно входящими в разложение уравнения потенциальной энергии в ряд Маклорена.

Теорему 2 применяют тогда, корда невозможно определить наличие или отсутствие минимума потенциальной энергии по членам второго порядка, например в случае, когда члены второго порядка малости в разложении потенциальной энергии отсутствуют.

Теорема Лагранжа — Дирихле и теоремы Ляпунова относятся к случаю равновесия консервативной системы.

Пример 1

Определить условия устойчивости равновесного положения системы с тремя степенями свободы, если потенциальная энергия этой системы определяется следующим выражением:

Где -обобщённые координаты системы; a, b, d, e, f-вещественные постоянные.

Решение. Для того чтобы потенциальная энергия системы была определенно положительной, ее дискриминант должен иметь все главные диагональные миноры положительными.


Так как

то на основании критерия Сильвестра получим следующие условия устойчивости равновесия системы:

Последний определитель третьего порядка вычисляем по правилу Саррюса


А поэтому

Следовательно, условия устойчивости равновесия этой системы определяются неравенствами

Функции Ляпунова. Критерий Сильвестра

Одним из наиболее эффективных методов исследования устойчивости движения является прямой метод Ляпунова, рассмотрим прямой метод для автономных систем.

Рассмотрим некоторые вещественные функции

определённых в области

(1)

Где -постоянное положительное число.

Предполагается что в области (1) эти функции однозначны, непрерывны и обращаются в нуль, когда все х1, . . . , хnравны нулю, т.е.

V(0)=0 (2)

Если в области (1) функция Vкроме нуля может принимать значения только одного знака, то она называется знакопостоянной (соответственно положительной или отрицательной). Если же знакопостоянная функция обращается в нуль только в том случае, когда все хг, . . . . . ., хп равны нулю, то функция Vназывается знакоопре-деленной (соответственно определенно-положительной или определенно-отрицательной). Функции, принимающие как положительные, так и отрицательные значения, называются знакопеременными функциями. Введенные таким образом функции V, используемые для исследования устойчивости движения, называются функциями Ляпунова.

Рассмотрим признаки, с помощью которых можно определить характер функции V. Прежде всего заметим, что знакоопределенная функция Vдолжна содержать все переменные хъ . . ., хп. Действительно, пусть, на- пример, функция Vне содержит переменную хп. Тогда при хг = . . . = хп^ = 0, функция Vбудет обращаться в нуль, что недопустимо для знакоопределенных функций.

Пусть знакоопределенная функция V— У (х) непрерывна вместе со своими производными. Тогда при х} = . . . = хп — 0 она. будет иметь изолированный экстремум и, следовательно, все частные производные первого порядка, вычисленные в этой точке, будут равны нулю (необходимые условия существования экстремума)

( 3)

Разложим функцию Vв ряд Маклорена по степеням х1, . . . , хn

где точками обозначены члены высшего порядка. Учитывая соотношения (2) и (3), получим

(4)

Здесь постоянные числа ckj=cjkопределены равенствами

(5)

Из формулы (4) видно, что разложение ш-ткоопре-делЕенной функции V в ряд по степеням хъ . . ., хп не содержит членов первой степени.

Предположим ,что квадратичная форма

(6)

принимает положительные значения и в нуль обращается только при х1 =. . . =хт = 0. Тогда вне зависимости от членов высшего порядка при достаточно малых по модулю Xfфункция У будет принимать также положительные значения и в нуль она булет обращаться только при хг = . . . = хп = 0. Таким образом, если квадратичная форма (6) определённо-положительна, то и функция V будет определённо-положительной.

Рассмотрим матрицу коэффициентов квадратичной формы (6):

(7)

и составим из нее п главных диагональных миноров (в матрице (7) они окантованы пунктиром)

(8)

В линейной алгебре доказывается следующий критерий Сильвестра :для того чтобы квадратичная форма с вещественными коэффициентами была определенно-положительной, необходимо и достаточно, чтобы все главные диагональные миноры А Д2, . . ., Ап матрицы ее коэффициентов были положительны, т. е.

(9)


Из сказанного следует, что критерий Сильвестра (9) для квадратичной части функции Vявляется достаточным (но не необходимым) условием определенной положительности самой функции V.

Если функция Vопределенно-отрицательна, то функция — Vбудет определенно-положительной. Поэтому достаточным условием определенной отрицательности функции Vбудет критерий Сильвестра (9) для матрицы —С. Этот критерий имеет вид

(10)

Т.е. определители должны последовательно чередовать знак, причём знак должен быть отрицательным.

В качестве примера рассмотрим функцию

Разложим эту функцию в ряд по степеням хх и х2. Имеем

где точками обозначения члены, содержащие х1 и х2 в степени выше второй. Внося эти выражения для sin3xtи cos(xL — х2) в функцию V, получим


Или, упрощая

Составим матрицу коэффициентов квадратичной части функции

V(по главной диагонали стоят коэффициенты при квадратах переменных, элементы с12иC2i равны половине коэффициента при дроизведениж ххх2):

Вычислим теперь главные диагональные миноры:

Отсюда следует, что условие Сильвестра выполнено (все ) и поэтому рассматриваемая функция Vв окрестности пуля определенно положительна. Заметим, что на всей плоскости хгх2 функция Vтолько положительна, так как при хг = х2 = пп Щ= 0 (га — 1,2, . . .) она обращается в нуль.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно