это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Реферат
на тему:
Точные методы решения систем линейных алгебраических уравнений (СЛАУ)
Данная лабораторная работа включает в себя два точных метода решения систем линейных алгебраических уравнений (СЛАУ):
Метод Гаусса.
Метод Холецкого.
Также данная лабораторная работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.
Описание метода:
Метод решения СЛАУ называют точным (прямым), если он позволяет получить решение после выполнения конечного числа элементарных операций. К прямым методам относят метод Крамера, метод Гаусса, метод Холецкого и другие. Основным недостатком прямых методов является то, что для нахождения решения необходимо выполнить большое число операций.
Сначала рассмотрим наиболее распространённый метод решения СЛАУ - метод Гаусса, состоящий в последовательном исключении неизвестных.
Пусть дана система уравнений
(1)
Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому виду:
где kn, aii 0, i=, аii - главный элемент системы.
На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.
Прямой ход.
Положим а11 0, если а11 = 0, то первым в системе запишем уравнение, в котором а11 0.
Расставим уравнения системы таким образом, чтобы коэффициент при х1 имел наибольшее значение (другими словами отсортируем систему по убыванию).
Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы. Продолжая этот процесс, получаем систему
Здесь (i, j = ) - новые значения коэффициентов и правых частей, которые получаются после первого шага.
Аналогичным образом, считая главным элементом 0, исключим неизвестное х2 из всех уравнений системы, кроме первого и второго, и т.д. Продолжаем этот процесс пока это возможно.
Если в процессе приведения системы (1) к ступенчатому виду появятся нулевые решения (равенства вида 0=0) их отбрасывают. Если же появится уравнение вида 0=bi, а bi 0, то это говорит о несовместимости системы.
Второй этап (обратный ход) заключается в решении ступенчатой системы. В последнем уравнении этой системы выражаем первое неизвестное xk через остальные неизвестные (xk+1, …, xn). Затем подставляем значение xk в предпоследнее уравнение системы и выражаем xk-1 через (xk+1, …, xn), затем находим xk-2, …, x1.
Теперь рассмотрим второй точный метод решения СЛАУ - метод Холецкого (метод квадратных корней).
Он применяется в случае, если матрица системы является симметричной и положительно определенной. В основе метода лежит алгоритм специального LU-разложения матрицы А, где L - нижняя треугольная матрица, а U - верхняя треугольная матрица (если главный минор не равен 0, то существует разложение, причем оно единственно).
Разбиение матрицы А= на верхнюю и нижнюю к примеру будет выглядеть так
L = и U =.
В результате преобразований матрица А приводится к виду A= (где - транспонированная матрица). Если разложение получено, то решение системы сводится к последовательному решению двух систем с треугольными матрицами: и . Для нахождения коэффициентов матрицы L неизвестные коэффициенты матрицы приравнивают соответствующим элементам матрицы A. Затем последовательно находят требуемые коэффициенты по формулам:
, i = 2, 3,..., m,
, i = 3, 4,..., m,
, i = k+1,..., m,
Составляя задачи на языке программирования Borland C++ Builder 6 для реализации точных методов решения СЛАУ я учитывал разное количество уравнений в системе (размерность матрицы задавал равным nxn). Но для проверки результатов использовал уравнения
(для проверки решения методом Гаусса) (2) и
(для проверки решения методом Холецкого) (3)
Методы существенно отличаются друг от друга и как описано выше имеют разные подходы для решения СЛАУ. Реализовав методы программным путем и сделав проверки, я пришел к выводу, что не все СЛАУ можно решить методом Холецкого. Как описано выше метод Холецкого применяется для решения систем, которые являются симметричными и положительно определенными. В свою очередь методом Гаусса решаются практически все системы. Исключения составляют невырожденные матрицы, т.е. те матрицы, определитель которых не равен 0.
#include "Unit1. h"
// ---------------------------------------------------------------------------
#pragma package (smart_init)
#pragma resource "*. dfm"
TForm1 *Form1;
int n=0,l=0;
float r=0,p=0;
const x=100;
float A [x] [x],Ver [x] [x],Nig [x] [x] ;
float *X;
float *Y;
bool fl1=false;
// ---------------------------------------------------------------------------
__fastcall TForm1:: TForm1 (TComponent* Owner)
: TForm (Owner)
{
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: ButtonOkClick (TObject *Sender)
{
TryStrToInt (Edit1->Text,n);
if (n>1)
{
StringGrid1->Enabled=true;
StringGrid1->RowCount=n;
StringGrid1->ColCount=n+1;
ButtonClear->Enabled=true;
ButtonOk->Enabled=false;
StringGrid1->Color=clWindow;
ButtonGauss->Enabled=true;
ButtonHolec->Enabled=true;
X=new float [n] ;
for (int i=0; i<n; i++)
{
for (int j=0; j<n+1; j++)
{
A [i] [j] =NULL;
}
X [i] =NULL;
}
}
else
{
ShowMessage ("Число должно быть вещественного типа!");
}
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: ButtonClearClick (TObject *Sender)
{
StringGrid1->Enabled=false;
StringGrid1->RowCount=0;
StringGrid1->ColCount=0;
ButtonClear->Enabled=false;
ButtonOk->Enabled=true;
StringGrid1->Color=clBtnFace;
ButtonGauss->Enabled=false;
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: ButtonGaussClick (TObject *Sender)
{
Memo1->Lines->Clear ();
for (int i=0; i<n; i++)
{
for (int j=0; j<n+1; j++)
{
TryStrToFloat (StringGrid1->Cells [j] [i],A [i] [j]);
}
}
for (int i=0; i<n; i++)
{
for (int j=0; j<n+1; j++)
{
if (A [i] [j] ==NULL)
{
ShowMessage ("Ошибка! Есть пустые ячейки!");
fl1=true;
i=n;
break;
}
}
}
Memo1->Lines->Add (" МЕТОД ГАУССА: ");
Memo1->Lines->Add ("");
if (! fl1) {
Memo1->Lines->Add ("Матрица приводится к ступенчатому виду: ");
l=0;
for (int i=0; i<n; i++)
{
for (int j=n-1; j>i; j--)
{
if (A [j-1] [l] <A [j] [l])
{
for (int k=0; k<n+1; k++)
{
r=A [j] [k] ;
A [j] [k] =A [j-1] [k] ;
A [j-1] [k] =r;
}
l=0;
}
else
{
if (A [j-1] [l] ==A [j] [l])
{
l++;
j++;
}
if (l==n+1)
{
j--;
l=0;
}
}
}
}
for (int k=0; k<n; k++)
{
for (int i=k; i<n; i++)
{
r=A [i] [k] ;
for (int j=k; j<n+1; j++)
{
A [i] [j] =A [i] [j] /r;
}
}
for (int i=k+1; i<n; i++)
{
for (int j=k; j<n+1; j++)
{
A [i] [j] =A [i] [j] -A [k] [j] ;
}
}
}
X [n-1] =A [n-1] [n] /A [n-1] [n-1] ;
for (int i=n-2; i>=0; i--)
{
r=A [i] [n] ;
for (int j=i+1; j<=n-1; j++)
r=r-A [i] [j] *X [j] ;
X [i] =r/A [i] [i] ;
}
String s="";
for (int i=0; i<n; i++)
{
s="";
for (int j=0; j<n+1; j++)
{
s+=FloatToStr (A [i] [j]) +" ";
}
Memo1->Lines->Add (s);
}
Memo1->Lines->Add ("");
Memo1->Lines->Add ("Корни СЛАУ равны: ");
for (int i=0; i<n; i++)
{
if (X [i] ! =NULL)
{
Memo1->Lines->Add ("x"+IntToStr (i+1) +" = "+FloatToStr (X [i]));
}
else
{
Memo1->Lines->Add ("Нет корней!");
break;
}
}
}
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: ButtonExitClick (TObject *Sender)
{
Close ();
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: RadioButton2Click (TObject *Sender)
{
ButtonGauss->Visible=false;
ButtonHolec->Visible=true;
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: RadioButton1Click (TObject *Sender)
{
ButtonGauss->Visible=true;
ButtonHolec->Visible=false;
}
// ---------------------------------------------------------------------------
void __fastcall TForm1:: ButtonHolecClick (TObject *Sender)
{
Memo1->Lines->Clear ();
for (int i=0; i<n; i++)
{
for (int j=0; j<n+1; j++)
{
TryStrToFloat (StringGrid1->Cells [j] [i],A [i] [j]);
}
}
for (int i=0; i<n; i++)
{
for (int j=0; j<n+1; j++)
{
if (A [i] [j] ==NULL)
{
ShowMessage ("Ошибка! Есть пустые ячейки!");
fl1=true;
i=n;
break;
}
}
}
Memo1->Lines->Add (" МЕТОД ХОЛЕЦКОГО: ");
Memo1->Lines->Add ("");
if (! fl1) {
Y=new float [n] ;
for (int i=0; i<n; i++)
{
Nig [i] [0] =A [i] [0] ;
Ver [0] [i] =A [0] [i] /Nig [0] [0] ;
}
for (int i=0; i<n; i++)
{
for (int j=0; j<n; j++)
{
if (i<j)
{
Nig [i] [j] =0;
}
if (i>j)
{
Ver [i] [j] =0;
}
}
}
for (int i=1; i<n; i++)
{
Ver [i] [i] =1;
}
for (int i=1; i<n; i++)
{
for (int j=i; j<n; j++)
{
for (int k=0; k<i; k++)
{
p=p+Nig [j] [k] *Ver [k] [i] ;
}
Nig [j] [i] =A [j] [i] -p;
p=0;
}
for (int j=i+1; j<n; j++)
{
for (int k=0; k<i; k++)
{
p=p+Nig [i] [k] *Ver [k] [j] ;
}
Ver [i] [j] =1/Nig [i] [i] * (A [i] [j] -p);
p=0;
}
}
for (int i=0; i<n; i++)
{
p=0;
for (int j=0; j<i; j++)
{
p=p+Nig [i] [j] *Y [j] ;
}
Y [i] = (A [i] [n] -p) /Nig [i] [i] ;
}
for (int i=n-1; i>=0; i--)
{
p=0;
for (int j=n-1; j>i; j--)
{
p=p+Ver [i] [j] *X [j] ;
}
X [i] = (Y [i] -p) /Ver [i] [i] ;
}
String s="";
Memo1->Lines->Add ("Нижняя треугольная матрица: ");
for (int i=0; i<n; i++)
{
s="";
for (int j=0; j<n+1; j++)
{
s+=FloatToStr (Nig [i] [j]) +" ";
}
Memo1->Lines->Add (s);
}
Memo1->Lines->Add ("Верхняя треугольная матрица: ");
for (int i=0; i<n; i++)
{
s="";
for (int j=0; j<n+1; j++)
{
s+=FloatToStr (Ver [i] [j]) +" ";
}
Memo1->Lines->Add (s);
}
Memo1->Lines->Add ("");
Memo1->Lines->Add ("Корни СЛАУ равны: ");
for (int i=0; i<n; i++)
{
if (X [i] ! =NULL)
{
Memo1->Lines->Add ("x"+IntToStr (i+1) +" = "+FloatToStr (X [i]));
}
else
{
Memo1->Lines->Add ("Нет корней!");
break;
}
}
}
}
// ---------------------------------------------------------------------------
Результаты расчета:
МЕТОД ГАУССА: | МЕТОД ХОЛЕЦКОГО: |
На первом этапе матрица приводится к ступенчатому виду: 1 - 2,25 0,5 0,5 0 1 6 4 0 0 1 0,625 На втором этапе вычисляются корни СЛАУ исходя из ступенчатой системы: x1 = 0,75 x2 = 0,25 x3 = 0,625 | Матрица разбивается на верхнюю и нижнюю треугольные матрицы. Нижняя треугольная матрица: 81 0 0 0 45 24,9999980926514 0 0 45 10,0000019073486 8,99999618530273 0 Верхняя треугольная матрица: 1 - 0,555555582046509 0,555555582046509 0 0 1 0,400000095367432 0 0 0 1 0 Корни СЛАУ равны: x1 = 6 x2 = - 5 x3 = - 4 |
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Сделать презентацию на тему Виды расчетов предприятий.
Другое, Экономика и управление предприятием
Срок сдачи к 31 окт.
Учет основных средств вариант 11 26 января 20?г
Решение задач, Бухгалтерский учет
Срок сдачи к 31 окт.
Политика кондефециальности защиты информации в управлении документацией
Реферат, Документационное обеспечение управления
Срок сдачи к 3 нояб.
Решить 5 задач по вероятности и статистике
Решение задач, Вероятность и статистика
Срок сдачи к 30 окт.
Тезисы по теме исследования
Статья, Креативная деятельность и социокультурное проектирование в образовании
Срок сдачи к 2 нояб.
Средства и методы развития координационных способностей у баскетболистов 8-11 лет
Курсовая, Избранный вид спорта
Срок сдачи к 10 нояб.
Диплом по предмету «Педагогическое образование»
Диплом, Педагогическое образование
Срок сдачи к 13 дек.
Тема: Применение графически-иллюстративного материала в обучении...
Диплом, Литература
Срок сдачи к 7 нояб.
Написать курсовую работу "Фотографирование при проверке показаний на месте"
Курсовая, Судебная Фотография
Срок сдачи к 26 нояб.
Две презентации на любые темы из списка
Презентация, Основы безопасности и защиты родины
Срок сдачи к 31 окт.
Заполните форму и узнайте цену на индивидуальную работу!