Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Выбор и построение интерполирующей функции

Тип Реферат
Предмет Математика
Просмотров
620
Размер файла
184 б
Поделиться

Ознакомительный фрагмент работы:

Выбор и построение интерполирующей функции

Министерство науки и образования Украины

Сумской государственный университет

кафедра информатики

Численные методы

Курсовая работа

на тему:

“ Выбор интерполирующей функции к заданной и ее построение ”

Сумы 2006


Содержание

Постановка задачи.

1. Введение.

2. Теоретическая часть.

3. Практическая реализация:

3.1 Программа на языке Pascal.

3.2 Решение в Excel.

4. Выводы.

Список использованной литературы.

Приложение.


Постановка задачи

Найти значение функции у в точке х=0.47 , используя интерполяционную схему Эйткина, проверить правильность решения с помощью кубического сплайна. Значения функции у приведены в таблице:

i012345
xi0,40,50,60,70,80,9
yi0,389420,479430,564640,644220,717360,78333
x=0,47

Введение

Пусть на отрезке задано Nточек , которые называются узлами интерполирования, и значения некоторой функции в этих точках: . Нужно построить функцию ( функцию, которая интерполирует), которая совпадала бы с в узлах интерполяции и приближала ее между ними, то есть такую, что . Геометрическая интерпретация задачи интерполяции состоит в том,что нужно найти такую кривую некоторого вида, что проходит через заданную систему точек С помощью этой кривой можно найти приближенное значение , де Задача интерполяции становится однозначной, если вместо произвольной функции искать многочлен степени не выше , который удовлетворяет условия:

.

Интерполяционный многочлен всегда однозначный, поскольку существует только один многочлен степени , который в данных точках принимает заданные значения. Существует несколько способов построения интерполяционного многочлена. Дальше мы рассмотрим основные способы подробнее.

Теоретическая часть

Интерполяционный многочлен Лагранжа

Интерполяционный многочлен Логранжа, что принимает в узлах интерполяции соответственно значений имеет вид:

(*)

С формулы видно, что степень многочлена равна , и многочлен Логранжа удовлетворяет все условия задачи интерполяции.

Если расстояние между всеми соседними узлами интерполирования одинаково, то есть , формула (*) значительно упрощается. Введем новую переменную , тогда Теперь интерполяционный полином Лагранжа имеет вид:

. (**)

Тут .

Коэффициенты , которые стоят перед величинами в формуле (**), не зависят от функции и от шага , а зависят только от величин Поэтому таблицами составленными для различных значений , можно воспользоватся при решении различных задач интерполирования для равноотстоящих узлов.

Возникает вопрос, на сколько близко многочлен Логранжа приближается к функции в других точках (не узловых), то есть на сколько большой остаток. На функцию накладывают дополнительные ограничения. А именно: предполагают, что в рассмотренной области изменения , которые содержат узлы интерполяции, функция имеет все производные до -го порядка включительно. Тогда оценка абсолютной погрешности интерполяционной формулы Логранжа имеет вид:

, (***)

где .

Интерполяционный многочлен Ньютона

Разделенными разностями называются соотношения вида:

- первого порядка:

- второго порядка:

(5.15)

…………………………………………………;

- n- го порядка:

С помощью разделенных різностей можно построить многочлен:


(5.16)

Он называется интерполяционным многочлен Ньютона для заданной функции. Эта форма записи более удобна для использования, поскольку при добавлении к узлам x0, x1, …, xn нового xn+1 все вычесленные раньше члены остаются без изменений, а в формулу добавляется только одно слогаемое. При использовани формулы Логранжа нужно вычислять все заново.

Если значения функции заданы для равноотстоящих значений аргумента (постоянную величину , i=0,1,…,n называют шагом интерполяции), то интерполяционный многочлен принимает вид:

(5.17)

Здесь - конечные разности к-го порядка. Они определяются по формулегде -биномиальные коэффициенты.

Сравнивая эту формулу с предыдущей, легко установить, что при конечные и разделенные разности связаны соотношением вида:

(5.18)

Для практического использования формулу (5.17) записывают в преобразованном виде. Для этого введем новую переменную , положив где - количество шагов , необходимое для достижения точки из точки . Таким образом получим первую интерполяционную формулу Ньютона для интерполирования вперед, то есть в начале таблицы значений:

(5.19)

Предположим, что точка интерполяции расположена вблизи конечной точки таблицы. В этом случае узлы интерполяции следует брать таким образом Формула Ньютона для интерполяциии назад имеет вид:

(5.20)

Разделенные разности можно выразить через конечные разности, если воспользоваться возможностью переставлять в них аргументы, и соотношением (5.18), откуда следует:

;

Введем переменную , учитывая что получим для вторую интерполяционную формулу Ньютона для интерполяции в конце таблицы :


.

Как первая, так и вторая интерполяционные формулы Ньютона могут быть использованы для екстраполяции функции, то есть для вычисления значений функции , значения аргументов которой лежат вне таблицы. Если и значение близко к , то выгодно использовать первый интерполяционный многочлен Ньютона, тогда и Таким образом, первая интерполяционная формула Ньютона применяется для интерполяции вперед и екстраполяции назад, а вторая - наоборот, для интерполяции назад и екстраполяции вперед.

Отметим, что операция екстраполирования, вообще говоря, менее точная чем операция интерполяции.

Интерполяционные формулы Ньютона выгодны, поскольку при добавлении новых узлов интерполяции необходимые дополнительные вычисления только для новых членов, без изменения старых.

Схема Эйткина

Пусть дана f задана таблично в точках хi она принимает значения уi= f(хi) (i=0,1,…,n). Требуется вычислить значение функции f в некоторой точке х, не совпадающей с точками хi. В таком случае нет необходимости строить общее выражение многочленна Лагранжа явно, а требуется только вичислить его значение в точке х. Эти вычисления удобно выполнить по интерполяционной схеме Эйткина. Характерной чертой этой схемы является единообразие вичислений.

Если функция f задана в двух точках х0 и х1 значениями у0 и у1, то для вычисления ее значения в точке х можно воспользоваться формулой:


(*) линейного интерполирования.

Обозначив значение функции в точке x через , формулу (*) можно представить в таком виде:

,

Где в правой части стоит определитель 2-го порядка. Эта формула эквивалентна формуле (*). Кроме того, , .

Пусть функция f задана в трех точках х0, х1 и х2 своими значениями у0, у1 и у2 и требуется вычислить ее значение в точке х. В этом случае по схеме Эйткина в точке х вычисляют сначала значения двух линейных многочленов

и ,

а затем значение квадратичного многочлена вида:

.

Непосредственной подстановкой убеждаемся, что ,


; , , .

Покажем еще, что совпадает с формулой Лагранжа для трех узлов интерполирования. Поскольку

,

то, раскрывая определитель, получаем:

Эта схема обобщается на более высокие степени. Если функция f задана в четырех точках, то кубическое интерполирование выполняется по формуле

,

Где и - значения квадратичных многочленов в точке х. Непосредственной проверкой убеждаемся, что и . Кроме того совпадает с кубическим интерполяционным многочленом Лагранжа:


.

Вообще, если в (n+1)-й точке хi (i=0,1,…,n) функция f принимает значения yi (i=0,1,…,n), то значение интерполяционного многочлена Лагранжа степени n в точке х можно вычислить по формуле

,

где и - значения интерполяционных многочленов, вычисленных в точке х на предшествующем шаге. Ясно, что для вычисления значения многочлена степени n в точке х необходимо по схеме Эйткина вычислить в этой точке значения n линейных, n-1 квадратичных, n-2 кубических многочленов и т. д., два многочлена степени n-1 и, наконец, один многочлен степени n. Все эти многочлены выражаются через определитель 2-го порядка, что делает вычисления единообразными.

Отметим то, что схема Эйткина применима и в случае неравноотстоящих узлов интерполирования.

Сплайн – интерполяция

В инженерной практике график функции y(xi) (i=0,N) строят в основном с помощью лекал. Если точки размещены редко, то пользуются гибкой линейкой (spline), ставят ее на ребро и изгибают так, чтобы она одновременно проходила через все точки.

Поскольку приближенное уравнение изгиба пружинистого бруса имеет вид , то можно допустить, что ее форма между узлами есть алгебраический полином 3-й степени.

Вероятно, интерполирующую функцию между каждыми двумя узлами можно взять, например, в таком виде:

(*)

.

Неизвестные коэффициенты ai, bi, ci, di найдем с условий в узлах интерполяции.

Поскольку полиномы совпадают с табличными значениями функции y(xi) (i=1,N) в узлах интерполяции, то:

(А)

(В)

Поскольку этих уравнений в два раза меньше, чем неизвестных коэффициентов, то надо еще какие-нибудь дополнительные условия (например, условия непрерывности 1-й и 2-й производных во всех точках, в том числе и в узлах интерполирования, то есть условия гладкости угла поворота пересечения и кривизны линейки).

С условий непрерывности производных у внутренних узлах имеем:

(С)

(D)

Найдем выражения для производных от сплайна S(i)(x):


(Е)

(F)

и подставим их в выражения (С) и (D). Как следствие, имеем 6

(G)

(H)

Для получения еще двух необходимых уравнений воспользуемся условиями в конечных узлах. Например, можно считать концы линейки отпущенными, что отвечает их нулевой кривизне, то есть

(I)

(J)

Построенные при таких условиях кубические сплайны называют свободными. При наличии других известных асимптотических данных задачи, возможны и другие условия на концах отрезков.

Уравнения (A), (B), (G)-(J) составляют полную СЛАУ для определения 4N неизвестных коэффициентов. Если эту СЛАУ преобразовать, то ее решение значительно упростится.

Очевидно, . Кроме того, из выражения (J)

(K)


а из выражения (H) –

(L)

Подставив уравнение (L) в формулу (В) учитывая, что , получим

; (М)

(N)

Извлекая из (G) bi и bi+1 с помощью (М), а di – на основании (L), придем к такой СЛАУ относительно ci:

(**)

Матрица этой тридиагональной, то есть нулю не равны только елементы главной и двух соседних диагоналей. Для ее решения можно воспользоваться любым методом, после чего надо найти bi и di из выражений (К) – (N).

Вообще-то можно рассмотреть задачу о нахождении сплайна n-й степени:


коэффициенты которого кусочно-постоянные и который в узлах интерполяции принимает значения заданной функции и непрерывный вместе со своими n-1 производными.

Практическая реализация

Программа на языке Pascal

В процессе выполнения работы мною была написана программа EITKIN на языке Pascal.

В данной программе есть два массива: одномерный массив X, в нем хранятся значения узлов интерполирования хi и двумерный массив Р, в нем хранятся значения многочленов степени не выше n, переменная z это, то значение для которого надо найти значение функции, n – количество узлов интерполирования. Все вычисления проводятся в одном встроенном цикле. Данные на экран выводятся в виде двухмерной матрицы.

Код программы:

program EITKIN;

uses wincrt, strings;

var x:array [1..60]of real;

p:array [1..60,1..60] of real;

z :real; i,j,n: integer;

begin

StrCopy(WindowTitle, 'Программа интерполяции функции по схеме Эйткина ');

clrscr;

write ('vvedite k-vo uzlov interpolirovanija n=');

readln (n);

write ('vvedite X dlja kotorogo nado najti znach func=');

readln (z);

writeln ('vvedite mas Xi');

for i:=1 to n do

begin

write ('vvedite elem X[',i,']=');

readln (x[i]);

end;

writeln ('vvedite mas Yi');

for i:=1 to n do

begin

write ('vvedite elem Y[',i,']=');

readln (p[1,i]);

end;

writeln ('PROCES VICHISLENIJA......');

for i:=2 to n do

begin

for j:=1 to n+1-i do

begin

p[i,j]:=1/(x[j+i-1]-x[j])*(p[i-1,j]*(x[j+i-1]-z)-p[i-1,j+1]*(x[j]-z));

end;

end;

writeln ('REZ MATRICA::::');

for i:=1 to n do

begin

write ('P^',i,'(',z:4:5,') | ');

for j:=1 to n+1-i do

begin

write (p[i,j]:4:5,' | ');

end;

writeln;

end;

writeln ('!!!!!!!!!OTVET!!!!!!!!!');

writeln ('y(',z:4:5,')=',p[n,1]:4:5);

readkey;

DoneWinCrt;

end.

Для чтобы найти значение функции у(х) в точке х с помощью этой программы нужно сначала ввести количество узлов интерполирования, значение х, для которого надо найти значение функции, а потом ввести узлы интерполирования хi и соответствующие им значения функции уi и нажать клавишу ENTER.

Также для определения степени интерполирующего многочлена я написал программу konechn_razn.

Код программы:

program konechn_razn;

uses wincrt, strings;

var y:array [1..50,1..50] of real;

i,j,n: integer;

begin

StrCopy(WindowTitle, 'Программа построения конечных разностей ');

clrscr;

write ('vvedite k-vo znachenij funcii n=');

readln (n);

writeln ('vvedite mas Yi');

for i:=1 to n do

begin

write ('vvedite elem Y[',i,']=');

readln (y[i,1]);

end;

writeln ('PROCES VICHISLENIJA......');

for j:=2 to n do

begin

for i:=1 to n+1-j do

begin

y[i,j]:=y[i+1,j-1]-y[i,j-1];

end;

end;

writeln ('REZ MATRICA::::');

writeln (' Yi | Dyi ');

for i:=1 to n do

begin

for j:=1 to n+1-i do

begin

write (y[i,j]:4:5,' | ');

end;

writeln;

end;

readkey;

DoneWinCrt;

end.

Входными данными для этой программы есть: количество узлов интерполирования и значения функции yi, для которых надо построить конечные разности.

Решение в Excel

Для проверки вычислений я решил поставленную задачу в Excel по схеме Эйткина:


Также в целях проверки вычислений я решил данную задачу с помощью кубических сплайнов:

График, отображающий значения функции, вычисленные по схеме Эйткина и с помощью кубических сплайнов:


Выводы

Все многочлены, которые надо вичислить для данного х выражаются через определитель 2-го порядка, что делает вычисления единообразными. Схему Эйткина просто программировать.

Можно отметить то, что схема Эйткина применима и в случае неравноотстоящих узлов интерполирования, то есть ее можно применять для любого шага интерполирования. Также надо отметить то, что, если в задаче требуется вычислить значение функции в одной точке, нет необходимости строить общее выражение многочленна Лагранжа или Ньютона явно, а требуется только вичислить его значение в точке х. Эти вычисления удобно выполнить по интерполяционной схеме Эйткина.

Сопоставим исходные данные, у нас имеется 6 узлов интерполирования. По этим точкам можно построить интерполяционный полином, причем 5-й степени, привлекая к исследованию интерполяцию кубическим сплайном, утверждаю, что данным методом можно построить на каждом подинтервале полином 3-й степени. Последним словом в выборе между первым и вторым методом будут конечные разности на заданном множестве узлов. Конечные разности являются аналогом производной от функции. В данном случае конечные разности использованы для определения степени полинома и для определения полином данная функция или нет, с помощью которого можно максимально приблизить данную функцию.

Данного количества узлов интерполирования не достаточно для точного определения является ли данная функция полиномом, то есть в данном случае конечные разности не являются точным критерием для выбора между двумя методами интерполирования.


Эйткин
x=0,47
y=0,45289
сплайн
x=0,47
y=0,45277

В результате вычисления значения функции в точке 0,47 видно что значения функции в искомой точке мало отличимые. То есть в данном случае можно применять оба метода.

Если взять точность вычисления до четвертого знака после запятой, то степень полинома по данным конечных разностей будет полином 3-й степени. Поскольку по схеме Эйткина строятся все полиномы степени не выше 6-й. И в этом случае лучше применять кубические сплайны.

Список использованной литературы

1. Б. П. Демидович и И. А. Марон. “Основы вычислительной математики”, Москва, 1963г.

2. Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. “Численные методы”, Москва, 1987г.

3. Козин А. С., Лященко Н. Я. Вычислительная математика: Пособие для факультативных занятий в 10 классе.- К.: Рад. школа, 1983. – 191 с.

4. Мусіяка В. Г. Основи чисельних методів механіки: підручник. – К.: Вища освіта, 2004. – 240 с.: іл.

5. Л. Д. Назаренко Чисельні методи. Дистанційний курс.

Приложение

Результаты работы программы EITKIN:

Результаты работы программы konechn_razn:


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно